EGU24-19329, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19329
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Environmental Players in the Lifespan of Landslides

Xie Hu, Yuqi Song, and Yiling Lin
Xie Hu et al.
  • College of Urban and Environmental Sciences, Peking University, Beijing, China (hu.xie@pku.edu.cn)

Landslides can move at divergent rates on the terrestrial planets. The occurrence and evolution of landslides are strongly affected by the stochastic nature of environment. Landslide activities are complicated by climate change and the attendant escalating number of extreme precipitation events. Here we use multi-source geodetic and remote sensing data (e.g., SAR and optical scenes, as well as climate reanalysis products) and skillsets (e.g., InSAR, pixel offset tracking, and AI) to disentangle the role of environmental players (e.g., water, wind, temperature, and tectonics) in the lifespan of landslides. The perpetual slow-moving landslide in Colorado Plateau will be exemplified to highlight the importance of pore fluid water from rainwater and snowmelt in regulating landslide speeds. An analog landslide to those on Mars will be exemplified to demonstrate an appropriate orientation and layout of topography may help promote eolian abrasion and landslide reactivation. The growth in the area and number of retrogressive thaw slumps in Qinghai-Tibet Plateau will be exemplified to unveil the tragedy of permafrost degradation due to warming temperature and ice-rich permafrost thaw. The spatial proximity of landslides to tectonic faults in California will be exemplified to show exacerbated landslide hazards by occasional dynamic shaking and prolonged weakening of materials.

How to cite: Hu, X., Song, Y., and Lin, Y.: Environmental Players in the Lifespan of Landslides, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19329, https://doi.org/10.5194/egusphere-egu24-19329, 2024.