EGU24-19501, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19501
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Inorganic biogenic carbon redistribution and transport in marine sediments

Prabodha Lakrani Hewage1, Luz María Mejía2, Negar Haghipour3, Mariem Saavedra-Pellitero4, Ben Trundley4, Timothy Eglinton3, David Hodell5, and Blanca Ausín1
Prabodha Lakrani Hewage et al.
  • 1Universidad de Salamanca, Spain
  • 2MARUM, Germany
  • 3ETH Zurich, Switzerland
  • 4University of Portsmouth, UK
  • 5University of Cambridge, UK

Coccolithophores are calcifying marine phytoplankton whose blooms can be seen from space and play an important, yet complex, role in the global carbon cycle. On one hand, coccolithophores sequester atmospheric CO2 to the deep ocean via photosynthesis contributing to the biological pump. On the other hand, coccolithophores increase aqueous CO2 via precipitation of tiny calcite scales named coccoliths (i.e., carbonate counter pump), which are a major component of marine sediments. Coccoliths are generally in the 2-20 µm size range, and thus they can be winnowed by strong currents and transported to distal locations. Here, we show the first coccoliths radiocarbon (14C) ages and explore the influence of size-dependent coccolith sorting and transport, redistribution, and fate in marine sediments. Because the coccolith depends on the species, we have separated and 14C dated four coccolith size fractions: 8-11 µm, 5-8 µm, 3-5 µm, and 2-3 µm, in  five depth intervals on a sediment core recovered from SHAK06-5K site, off the Iberian Margin. Coccolith separation was achieved by a combination of dry sieving, microfiltration, centrifugation, and settling experiments. Energy Dispersive Spectroscopy (EDS) images of selected size fractions were used to estimate the relative contribution of coccolith and non-coccolith carbonate. A relationship between coccolith 14C age and grain size is apparent in all samples, with the smallest size class recording the youngest ages and the largest coccoliths being the oldest. The latter suggests that hydrodynamic sorting largely influences coccolith redistribution in marine sediments, where larger coccoliths result in increased mobility, as they are prone to resuspension than coccoliths in 2-3 µm size fraction that tend to show cohesive behaviour. The 14C ages of coccoliths are older than those of co-deposited planktic foraminifera, bulk organic carbon (OC), long-chain fatty acids (LCFA), and alkenones. Coccoliths within the 2-3 µm size class show 14C ages comparable to those of OC in all samples. Such a pattern indicates similar transport mechanisms for both the smallest coccoliths and OC, and that the majority of carbonate in the 2-3 µm size fraction, including the non-coccolith particles, is predominantly derived from marine primary production and thus, of biogenic origin. Our study has implications for palaeoceanographic studies using coccoliths as paleo-productivity and geochemical proxies.

How to cite: Hewage, P. L., Mejía, L. M., Haghipour, N., Saavedra-Pellitero, M., Trundley, B., Eglinton, T., Hodell, D., and Ausín, B.: Inorganic biogenic carbon redistribution and transport in marine sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19501, https://doi.org/10.5194/egusphere-egu24-19501, 2024.