EGU24-1957, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1957
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Bacterial decomposition of dissolved organic matter: including the colloidal perspective

Erika Andersson1,2, Lars Tranvik1, Marloes Groeneveld1, Anders Tunlid3, Per Persson4, and Ulf Olsson2
Erika Andersson et al.
  • 1Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
  • 2Division of Physical Chemistry, Lund University, Lund, Sweden
  • 3Department of Biology, Lund University, Lund, Sweden
  • 4Centre for environmental and climate research, Lund University, Lund, Sweden

Dissolved organic matter (DOM) is a major carbon pool and considered the most bioavailable and most mobile fraction of organic matter. DOM is generally defined as the organic matter passing a filter pore size of 0.2 or 0.45 µm, and this size cut off means that DOM not only contains dissolved molecules but also colloidal objects and aggregates up to a few hundred nanometres. The properties of this colloidal DOM fraction, such as for example size, shape, and surface charge, will affect its actual bioavailability and mobility in the environment. Although previously not well studied, there has recently been a growing interest in this colloidal fraction of DOM.

We have studied DOM extracted by water from a boreal spruce forest soil, filtered through a 0.2 µm pore size. By using a combination of spectroscopy techniques, such as NMR, and light (SLS, DLS), X-ray (SAXS) and neutron (SANS) scattering techniques, we can access chemical and physical information on both the molecular and colloidal fractions of DOM.

Our results show that the colloidal DOM has a homogenous chemical composition, and that carbohydrates is the dominating chemical component in both the colloidal and molecular DOM. The colloids have a mass fractal structure which does not change upon dilution and they are electrostatically stabilised against aggregation. In a lab scale study, we investigated the bacterial decomposition of this DOM during a two-month incubation. The molecular fraction of DOM was quickly decomposed. However, no change was observed for the colloidal DOM, constituting ca. 50% of the carbon, indicating that it persisted bacterial decomposition.

Our results suggest that colloidal properties could be an important but hitherto overlooked aspect to the central question of what dictates organic matter reactivity and persistency in different environments and across different time scales. Our current work extends from soil solution to aquatic ecosystems, to assess the ubiquity of the colloidal fraction of DOM.

How to cite: Andersson, E., Tranvik, L., Groeneveld, M., Tunlid, A., Persson, P., and Olsson, U.: Bacterial decomposition of dissolved organic matter: including the colloidal perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1957, https://doi.org/10.5194/egusphere-egu24-1957, 2024.