EGU24-19608, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19608
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

GNSS for geodynamics in Antarctica: Sensitivity to reference frame realizations

Karl Heidrich-Meisner, Eric Buchta, and Mirko Scheinert
Karl Heidrich-Meisner et al.
  • Institute of Planetary Geodesy, TUD Dresden University of Technology, Dresden, Germany

Determining time series of bedrock motion from global navigation satellite systems (GNSS) in Antarctica is one method to investigate geodynamical processes (e. g. glacial isostatic adjustment (GIA)). To achieve coordinate time series with the highest possible precision, a stable realization of the International Terrestrial Reference Frame (ITRF) is a crucial precondition. Regional networks of GNSS stations have the advantage of exhibiting small common mode errors and allowing to infer accurate velocity estimates. However, to achieve high consistency, it is necessary to base the analysis on a global network of International GNSS Service (IGS) stations, constraining them to their ITRF positions. Various approaches can be found in the literature on how the global solution is constrained to the ITRF and how the regional solution is transformed to the global solution. These approaches have different effects on the resulting time series and inferred parameters, e. g. absolute coordinates, linear trends, and noise properties. In this study, approximately 30 Antarctic GNSS stations are processed together with a global GNSS network of overall 200 IGS stations. We investigate different approaches to realize the ITRF and discuss the inferred results. To be consistent w. r. t. the general processing, we use a consistent set of GNSS observation data, GNSS products (e. g. orbit corrections), and apply the Bernese GNSS Software v5.4. In this way, the residuals between the different coordinate time series can be assumed to be due to the differences in reference frame realization. In our time series analysis, we put particular emphasis on linear trends because these are most important for GIA studies.

How to cite: Heidrich-Meisner, K., Buchta, E., and Scheinert, M.: GNSS for geodynamics in Antarctica: Sensitivity to reference frame realizations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19608, https://doi.org/10.5194/egusphere-egu24-19608, 2024.