EGU24-1963, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1963
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A numerical model of microplastic transport for fluvial systems

John Armitage and Sébastien Rohais
John Armitage and Sébastien Rohais
  • Department of Earth Science and Environmental Technologies, IFP Energies Nouvelles, Rueil-Malmaison, France (john-joseph.armitage@ifpen.fr)

Rivers are the primary pathway of microplastic pollution from source to the eventual sink in the marine environment. However, like sediments, microplastic will become trapped within the fluvial system as it makes its way from source-to-sink. There is therefore the potential that rivers are an important reservoir of microplastic pollution globally. To explore the transport of microplastic through the fluvial system we develop a reduced complexity model of microplastic erosion, transport, and deposition that builds on methods developed for the transport of sediment. We apply this model to the river Têt, France, where there has been punctual monitoring of the flux of microplastic at the outlet. We find that the reduced complexity model captures the observed quantity of microplastic under reasonable assumptions of the relationship between microplastic sources and population density. The model that best matches observed fluxes of microplastic at the outlet of the Têt river requires between 1 and 10 ppm volume concentration of microplasitc per 200 × 200 m in the top half a meter of soil. This concentration of microplastic then travels within the river network with a settling velocity of between 10-4 and 10-6 m/sec. The model results imply that a large proportion of microplastic will become entrained within the sediments along the fluvial system. This model is a first step in assessing where to sample for microplastic pollution within river networks and points to regions susceptible to microplastic pollution.

How to cite: Armitage, J. and Rohais, S.: A numerical model of microplastic transport for fluvial systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1963, https://doi.org/10.5194/egusphere-egu24-1963, 2024.