EGU24-19778, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19778
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Source- and receiver-coupling effects for time-domain Full Waveform Inversion

Hagen Söding1, Hansruedi Maurer1, and Thomas Fechner2
Hagen Söding et al.
  • 1ETH Zurich, Institute of Geophysics, Department of Earth Sciences, Switzerland (hagen.soeding@erdw.ethz.ch)
  • 2Geotomographie GmbH, 56567 Neuwied, Germany

Tomographic techniques have been an indispensable tool for tackling manifold problems in earth and environmental sciences. For wavefield techniques, like seismics and ground penetrating radar, full waveform inversions offer powerful tools for extracting the full waveform information content to obtain high-resolution subsurface images. Although mostly applied to deeper targets (exploration scale), near-surface full waveform information holds a strong potential to analyse the often more complicated subsurface structures both in imaging and monitoring applications. Due to the complexity of the very shallow subsurface, source- and receiver coupling often exhibit substantial variations and can thus not be neglected. Maurer et al. (2012) showed that this problem can be addressed in frequency domain full waveform inversions by including source- and receiver coupling terms as additional unknowns into the inversion workflow. However, there are inherent trade-offs between the source- and receiver coupling factors. This is irrelevant for frequency-domain full waveform inversions, but this problem needs to be addressed for time-domain inversion problems.

In our contribution we present two possible options to make source- and receiver coupling inversions also applicable in time-domain problems, using either a parameterized source wavelet or a sparsity regularisation approach. We demonstrate our novel methodology with a synthetic study and with an application to an acoustic seismic full waveform inversion on a CCS study from the Digimon project from Svelvik, Norway.

 

References:

Hansruedi Maurer, Stewart A. Greenhalgh, Edgar Manukyan, Stefano Marelli, Alan G. Green; Receiver-coupling effects in seismic waveform inversions. Geophysics 2012;; 77 (1): R57–R63. doi: https://doi.org/10.1190/geo2010-0402.1

How to cite: Söding, H., Maurer, H., and Fechner, T.: Source- and receiver-coupling effects for time-domain Full Waveform Inversion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19778, https://doi.org/10.5194/egusphere-egu24-19778, 2024.