EGU24-1988, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1988
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Predictive ability assessment of Bayesian Causal Reasoning (BCR) on runoff temporal series

Santiago Zazo1, José Luis Molina1, Carmen Patino-Alonso2, and Fernando Espejo1
Santiago Zazo et al.
  • 1IGA Research Group. Salamanca University, High Polytechnic School of Engineering Avila, Department of Hydraulic Engineering, Av. de los Hornos Caleros, 50, 05003 Ávila, Spain.
  • 2IGA Research Group. Salamanca University, Department of Statistics, Campus Miguel de Unamuno, C/Alfonso X El Sabio s/n, 37007, Salamanca, Spain.

The alteration of traditional hydrological patterns due to global warming is leading to a modification of the hydrological cycle. This situation draws a complex scenario for the sustainable management of water resources. However, this issue offers a challenge for the development of innovative approaches that allow an in-depth capturing the logical temporal-dependence structure of these modifications to advance sustainable management of water resources, mainly through the reliable predictive models. In this context, Bayesian Causality (BC), addressed through Causal Reasoning (CR) and supported by a Bayesian Networks (BNs), called Bayesian Causal Reasoning (BCR) is a novel hydrological research area that can help identify those temporal interactions efficiently.

This contribution aims to assesses the BCR ability to discover the logical and non-trivial temporal-dependence structure of the hydrological series, as well as its predictability. For this, a BN that conceptually synthesizes the time series is defined, and where the conditional probability is propagated over the time throughout the BN through an innovative Dependence Mitigation Graph. This is done by coupling among an autoregressive parametric approach and causal model. The analytical ability of the BCR highlighted the logical temporal structure, latent in the time series, which defines the general behavior of the runoff. This logical structure allowed to quantify, through a dependence matrix which summarizes the strength of the temporal dependencies, the two temporal fractions that compose the runoff: one due to time (Temporally Conditioned Runoff) and one not (Temporally Non-conditioned Runoff). Based on this temporal conditionality, a predictive model is implemented for each temporal fraction, and its reliability is assessed from a double probabilistic and metrological perspective.

This methodological framework is applied to two Spanish unregulated sub-basins; Voltoya river belongs to Duero River Basin, and Mijares river, in the Jucar River Basin. Both cases with a clearly opposite temporal behavior, Voltoya independent and Mijares dependent, and with increasingly more problems associated with droughts.

The findings of this study may have important implications over the knowledge of temporal behavior of water resources of river basin and their adaptation. In addition, TCR and TNCR predictive models would allow advances in the optimal dimensioning of storage infrastructures (reservoirs), with relevant substantial economic/environmental savings. Also, a more sustainable management of river basins through more reliable control reservoirs’ operation is expected to be achieved. Finally, these results open new possibilities for developing predictive hydrological models within a BCR framework.

How to cite: Zazo, S., Molina, J. L., Patino-Alonso, C., and Espejo, F.: Predictive ability assessment of Bayesian Causal Reasoning (BCR) on runoff temporal series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1988, https://doi.org/10.5194/egusphere-egu24-1988, 2024.