EGU24-20258, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-20258
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Digital twin development for an irrigation machine

Guillermo Salvador García Lovera, Rafael González, Emilio Camacho, and Pilar Montesinos
Guillermo Salvador García Lovera et al.
  • Universidad de Córdoba, Departamento de Agronomía, Área de Ingeniería Hidráulica (g72galog@uco.es)

Irrigated agriculture, the main user of water resources, is undergoing a change in its management and use. Therefore, tools such as artificial intelligence or digital twins applied to water management can improve it to maximize water use efficiency. Thus, the main objective of this work focuses on the development and implementation of a digital twin in a mobile irrigation system, specifically a universal irrigation machine. The digital twin, DT, is an accurate, real-time virtual representation of a real element (irrigation system), becoming an advanced decision support system for irrigation management, which can incorporate artificial intelligence tools for the implementation of intelligent precision irrigation. This technology allows, in real time, to simulate and analyze multiple operation scenarios before making decisions that affect the actual system. Thus, several interconnected components have been developed to form the DT of a real irrigation machine, located in southern Spain. It reproduces the machine operation in real time using information obtained from sensors (climatic information, soil moisture probes, pressure transducers and flowmeters) located in the study area and in the irrigation machine itself. The DT is made up of different components: i) the hydraulic model of the machine that provides the pressure and flow rate supplied by the emitters of the irrigation machine; ii) the irrigation programming module that manages the machine operation (at what time and for how long) during the irrigation campaign;  iii) The irrigation machine water distribution model that provides water distribution maps, which will allow adjusting the operation of the machine (for example, forward speed) aimed at that each spatial element of ​​the irrigation plot (conditioned by the parameters soil, climate and stage of development of the irrigated crop) receives the required amount of water; and iv) the communication module with sensors. The DT of the irrigation machine provides the amount of water that each spatial unit of the plot receives in each irrigation event throughout the irrigation campaign for different operation conditions of the irrigation machine. This information can be the input of other DTs such as the crop development DT to create more complex DTs that reproduce the operation of an irrigated farm. Finally, the ability to monitor and simulate irrigation in real time by the DT provides farm managers with valuable data to make correct decisions, especially in periods of water scarcity, adjusting irrigation management to the spatial variability of the plot, taking into account the water availability to maximize crop production.

How to cite: García Lovera, G. S., González, R., Camacho, E., and Montesinos, P.: Digital twin development for an irrigation machine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20258, https://doi.org/10.5194/egusphere-egu24-20258, 2024.