Irrigation parameterization in the Operational Numerical Weather Prediction model ICON-nwp
- 1University of Bonn, Institute for Geosciences, Meteorology, Bonn, Germany (jane.roque80@gmail.com)
- 2Deutscher Wetterdienst
Irrigation is one agricultural practice that contributes to maintain an optimal soil water content for crop development. Currently, farmers find this practice as an essential method for adapting to climate change. The Earth science community identified some irrigation effects beyond soil moisture and plant growth impact, as multiple studies found an influence on atmospheric variables such as 2 m temperature, relative humidity and even precipitation. Moreover, the effect of irrigation on the Earth’s system has been studied on various temporal and geographical scales and with different climate and land surface models. However, there are few studies that simulated the effect of irrigation on higher resolutions on a regional scale. Therefore, the aim of this study is to include the representation of irrigation processes in the operational ICON-nwp in Limited Area Mode on the EURO-CORDEX domain. The implementation of the current irrigation parameterization in ICON-nwp coupled with TERRA is an adaptation of the CHANNEL scheme developed by Valmassoi et al. (2020). We found suitable to include this scheme in the land surface and atmosphere interface of the icon-nwp-2.6.6-nwp0 version. The present study consists of four sensitivity experiments with different irrigation water amounts, namely 2.6 mmd-1, 6.7 mmd-1 and two fixed soil water contents, field capacity and saturation. All experiments have the same irrigation frequency (1 day), length (24 hours), and simulation period (May to August). The model settings for the experiments are 3 km resolution, 75 vertical levels and ICON boundary and initial conditions. The results from the difference between experiments and the control run demonstrate that ICON captures the irrigation effect on land surface atmospheric variables. As expected, soil moisture content increased on different magnitudes in all experiments. Moreover, 2 m temperature values dropped on average -0.74 K in irrigated areas. Likewise, energy fluxes were sensible to the different irrigation amounts.
How to cite: Roque, J., Valmassoi, A., and Keller, J.: Irrigation parameterization in the Operational Numerical Weather Prediction model ICON-nwp, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20366, https://doi.org/10.5194/egusphere-egu24-20366, 2024.