EGU24-20381, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-20381
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Physical and mechanical characterization of veined rocks: Implications to a porphyry model

Franco Robbiano1, Luis Felipe Orellana2, and Marie Violay1
Franco Robbiano et al.
  • 1EPFL, ENAC, LEMR, Lausanne, Switzerland (franco.robbiano@epfl.ch)
  • 2Department of Mining Engineering, FCFM - University of Chile, Chile

The brittle-ductile transition is an important mechanical shift within the Earth's lithosphere and, as a crucial interface between ascending hot magma and colder host rock, plays a fundamental role in fluid migration within hydrothermal systems. Traditionally assumed to occur at temperatures between 350 °C and 400 °C, recent studies challenge this assumption, revealing a temperature transition range dependent on minerals. Experimental and numerical investigations highlight significant variability, ranging from 260 °C in wet quartz to 700 °C for dry orthopyroxene within homogeneous mineral compositions.

This study delves into the complexities of this rheological barrier in the El Teniente Mafic Complex in Chile (currently a copper mine and formerly a hydrothermal system at the BDT), unraveling its impact on the migration of magmatic fluids. Building on previous research suggesting a self-sustaining mechanism that facilitates fluid movement over the brittle-ductile transition through overpressure-permeability waves and the formation of a dense, multi-episode vein network, our focus is on understanding deformation mechanisms and the localization of deformation and permeability at the BDT. Heat transfer models propose a dual paradigm of conduction and convection, adding to the complexity.

To address these challenges, we conducted a comprehensive series of physical and mechanical measurements on 34 cylindrical samples from the El Teniente Mafic Complex. This included analyses of density, porosity, elastic wave characteristics, and electrical conductivity under variable water conductivities. Elastic wave measurements were performed using 2.25 MHz transducers on both dry and saturated samples. Permeabilities were determined by the pulse decay technique for compact rocks, complemented by triaxial tests and local strain measurement using strain gauges, along with acoustic emission measurements on dry samples subjected to confinements similar to those near the mine.

Our results highlight consistently low porosity (below 1%) in the samples, with electrical conductivity, permeability, and strength controlled by veins. Particularly, at lower salinities, the metallic particle content and the orientation of the vein with respect to the loading axis significantly influence electrical conductivity and phase. At higher water conductivities, behavior is governed by connected porosity. Furthermore, favorably oriented veins emerge as crucial controllers of both permeability and mechanical resistance.

These observations align with a convection heat flow model in a porphyry system, providing significant insights into the complex interaction between rock and vein properties. The study uniquely focuses on fossil high enthalpy systems, shedding light on their complex behavior. Additionally, the article discusses constraints on model variables, fostering a comprehensive understanding of the brittle-ductile transition in magmatic-hydrothermal systems.

How to cite: Robbiano, F., Orellana, L. F., and Violay, M.: Physical and mechanical characterization of veined rocks: Implications to a porphyry model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20381, https://doi.org/10.5194/egusphere-egu24-20381, 2024.