EGU24-20504, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-20504
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Detecting Climate Change Impacts on Socio-Hydrological Systems in the Rocky Mountains, USA

David Williams, Corrine Knapp, Bryan Shuman, Bart Geerts, Melissa Bukovsky, Brent Ewers, Shannon Albeke, Sarah Collins, Jeff Hamerlinck, Martha Inouye, Jewell Lund, Fabian Nippgen, and Ginger Paige
David Williams et al.
  • University of Wyoming, Laramie, USA

Observation networks established in complex mountain landscapes promise to address critical gaps in understanding of socio-hydrological systems and their process interactions operating at local to regional scales. Knowledge of vulnerabilities and risks founded on observed biophysical and socioeconomic conditions and responses is required to represent realistic scenarios in model simulations of climate change impacts on managed water resources. Socio-hydrological observatories often lack design coordination that consequently constrains the ability to link processes and detect feedbacks across scales and domain boundaries. The goal of the 5-year (2022-2027) project WyACT (Wyoming Anticipating Climate Transitions) is to build adaptive capacity in headwater mountain communities in the Greater Yellowstone Area of of the Rocky Mountains founded on observations, simulation modeling, and driven stakeholder needs and participation. A key feature of WyACT is the development, from the ground up, of a regional observatory network that explicitly coordinates observations of socioeconomic, hydrological, and ecological responses to climate-driven stressors. WY-SEaSON (Wyoming Socio-Environmental Systems Observatory Network) will quantify and monitor the range of responses of snowpack and soil moisture, streamflow, aquatic ecosystems, vegetation stress and fire risk, economic risk perception, and preferred adaptation pathways to a changing climate in a key headwaters region that feeds three major river drainages in western North America. This presentation highlights the structure of WY-SEaSON including the operating principles, goals, mission, and design with examples of emerging and integrated observations.

How to cite: Williams, D., Knapp, C., Shuman, B., Geerts, B., Bukovsky, M., Ewers, B., Albeke, S., Collins, S., Hamerlinck, J., Inouye, M., Lund, J., Nippgen, F., and Paige, G.: Detecting Climate Change Impacts on Socio-Hydrological Systems in the Rocky Mountains, USA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20504, https://doi.org/10.5194/egusphere-egu24-20504, 2024.