EGU24-20799, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-20799
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Size classification of particulate organic carbon concentration and its link to the ecosystem based on Machine Learning techniques.

Anna Denvil-Sommer, Corinne Le Quere, Rainer Kiko, Erik Buitenhuis, Marie-Fanny Racault, and Fabien Lombard
Anna Denvil-Sommer et al.
  • NCAS, University of Reading, United Kingdom of Great Britain – England, Scotland, Wales (anna.sommer.lab@gmail.com)

Biogeochemical ocean models are usually based on two size classes for particulate organic matter: small classes (1-100 𝜇m) and large classes (100-5000 𝜇m). Based on the measurements of particulate organic carbon (POC) concentration from UVP5 profiles and observations of environmental and ecosystem conditions we estimated an optimal number of size classes for POC that can be introduced in biogeochemical ocean models. 

We identified four size classes based on the correlation between POC concentration and environmental and ecosystem variables. It gives us information on the relationship between POC and surrounding temperature, chlorophyll-a concentration, nitrate, phosphate and oxygen levels as well as plankton functional types (PFTs). 

Further, we applied Machine Learning methods to reconstruct size classes of POC concentration and identify the most important drivers for each class. We showed that the concentration of POC smaller than 0.3 mm mostly depends on environmental characteristics while concentration of POC bigger than 0.3 mm strongly depends on PFTs.  

How to cite: Denvil-Sommer, A., Le Quere, C., Kiko, R., Buitenhuis, E., Racault, M.-F., and Lombard, F.: Size classification of particulate organic carbon concentration and its link to the ecosystem based on Machine Learning techniques., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20799, https://doi.org/10.5194/egusphere-egu24-20799, 2024.