EGU24-2123, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2123
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A novel modeling approaches to understand the fate and transport of microplastics in aquatic environment

Sadashiv Chaturvedi, Liu Min, Amit Kumar, and Zeng Wenfan
Sadashiv Chaturvedi et al.
  • Nanjing University of Information Science and Technology, Hydro-meteorology and Water resources, China (chaturvedi9shiv@gmail.com)

The pervasive presence of microplastics (MPs) in natural waters presents a global threat to aquatic ecosystems and human well-being. While field monitoring is extensive, the focus has primarily been on characterizing MPs types, occurrences, and distributions, with limited attention has been made on modeling, because of the unavailability of datasets, inadequacy of the methodologies, and site-specific studies. This gap prompted to build the advocating of hybrid models that integrate hydrodynamics with process-based for categorization, transportation, and transformation, and further know the potential risks of ecological, climatic and human health so that associated risks could be mitigated. Additionally, standardizing data calibration and validation is essential to enhance the comparability of modeling results with field investigations, critical for informed decision-making in addressing the global challenge of MPs pollution. Thus, addressing this gap in understanding microplastic activities, dynamics, and their interactions within aquatic environments is pivotal in the global scientific fraternity. A new numerical framework, CaMPSim-3D, integrates a Lagrangian particle-tracking model (PTM) with a Eulerian-based hydrodynamic system (TELEMAC) is applied to simulate microplastics' fate and transport. This innovative model considers various advection schemes, revealing significant differences in predictions, with the Third Order Total Variation Diminishing (TVD3) Runge-Kutta method showing promise by providing accurate results at lower computational costs.

How to cite: Chaturvedi, S., Min, L., Kumar, A., and Wenfan, Z.: A novel modeling approaches to understand the fate and transport of microplastics in aquatic environment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2123, https://doi.org/10.5194/egusphere-egu24-2123, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 14 Apr 2024, no comments