EGU24-21472, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-21472
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lyoluminescence: a potential tool for dating evaporites up to the Middle-Pleistocene?

Magdalena Biernacka1,2 and Sebastian Kreutzer1
Magdalena Biernacka and Sebastian Kreutzer
  • 1Institute of Geography, Heidelberg University, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany
  • 2Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland

Lyoluminescence (LL) is light emission during the solvation of previously irradiated crystals in the liquid-solid interface (Atari, 1980). Our aim is the breakthrough development of lyoluminescence as a dating tool on halite (here: sodium chloride and potassium chloride) for application in Earth Sciences. The positive correlation between radiation dose and LL light emission makes crystal lattice defects viable natural ionizing radiation dosimeters. With a saturation dose of ~10 kGy (e.g. Atari et al., 1973) for sodium chloride dissolved in pure water and for realistic dose rates of ~4 Gy/ka (e.g., Han et al., 2014), the LL signal from salt minerals potentially may determine an age up to 2.5 Ma.
We hypothesize that LL, naturally observable in salt minerals, will allow dating the last recrystallization event significantly beyond the age limits of conventional luminescence-dating methods. In the past, the potential of halite as a material for optical luminescence dating had been suggested, e.g. Bailey et al., (2000); Zhang et al., (2005). However, LL may offer an additional luminescence-dating tool for routine use in geochronology but targeting the crystallization instead of heat or light exposure event. Moreover, it may enable tapping into different archives and subsurface processes where only the event of the last hydration is of interest.
In our contribution, we present the first basic design of a measurement prototype using 3D printing and preliminary experimental results of salts easily soluble in water.

References
Atari, N.A., 1980. Lyoluminescence mechanism of gamma and additively coloured alkali halides in pure water. Journal of Luminescence 21, 305–316. https://doi.org/10.1016/0022-2313(80)90009-5
Atari, N.A., Ettinger, K.V., Fremlin, J.H., 1973. Lyoluminescence as a possible basis of radiation dosimetry. Radiation Effects 17, 45–48. https://doi.org/10.1080/00337577308232596
Bailey, R.M., Adamiec, G., Rhodes, E.J., 2000. OSL properties of NaCl relative to dating and dosimetry. Radiation Measurements 32, 717–723. https://doi.org/10.1016/S1350-4487(00)00087-1
Han, W., Ma, Z., Lai, Z., Appel, E., Fang, X., Yu, L., 2014. Wind erosion on the north‐eastern Tibetan Plateau: constraints from OSL and U‐Th dating of playa salt crust in the Qaidam Basin. Earth Surf Processes Landf 39, 779–789. https://doi.org/10.1002/esp.3483
Zhang, J.F., Yan, C., Zhou, L.P., 2005. Feasibility of optical dating using halite. Journal of Luminescence 114, 234–240. https://doi.org/10.1016/j.jlumin.2005.01.009
 

How to cite: Biernacka, M. and Kreutzer, S.: Lyoluminescence: a potential tool for dating evaporites up to the Middle-Pleistocene?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21472, https://doi.org/10.5194/egusphere-egu24-21472, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 12 Apr 2024, no comments