EGU24-21623, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-21623
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Temporal variability of the stability field of methane hydrates in the oceans

Leonardo Riccucci, Angelo Camerlenghi, Stefano Salon, and Umberta Tinivella
Leonardo Riccucci et al.
  • OGS Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy

Climate change is mainly monitored at the Earth's surface. However, it is well known that as part
of ongoing climate change, ocean circulation is also changing, and therefore the ocean floor is
also subject to temperature changes.
In this study, the depth of the global methane hydrate stability zone was assessed by analyzing its
changes over the period from 1993 to 2018 to investigate the effect of climate change on the
stability of methane hydrates.
Indeed, seafloor sediments are often permeated by a methane hydrate phase, the stability of
which depends on the pressure and temperature field, among other parameters, and any changes
in temperature conditions near the seafloor can bring the methane hydrate into unstable
conditions.
The data needed for the assessment of methane hydrate stability were obtained from The Global
Ocean Physics Reanalysis data set (GLORYS12V1), produced under the European Copernicus
Marine Environment Monitoring Service (CMEMS), and GEBCO- The General Bathymetric Chart
of the Oceans. The data were then processed with original data processing software developed in
Fortran and Python languages.
A quantitative estimate of the amount of methane released into ocean masses by the dissociation
of methane hydrate in shallow sediments over the period under consideration was also obtained.
The release of large amounts of methane could have an impact on submarine geological hazards,
such as submarine landslides, and the eventual reaching of the atmosphere by methane would
reinforce ongoing climate change.

How to cite: Riccucci, L., Camerlenghi, A., Salon, S., and Tinivella, U.: Temporal variability of the stability field of methane hydrates in the oceans, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21623, https://doi.org/10.5194/egusphere-egu24-21623, 2024.