EGU24-21924, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-21924
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Measuring Induced Polarization signals from deep seated magma chamber – preliminary results from a pilot survey in Finland

Bitnarae Kim1, Jacques Deparis1, Mathieu Darnet1, Francois Bretaudeau1, Simon Vedrine1, Julien Gance2, Jochen Kamm3, Uula Autio4, Cedric Patzer3, and Suvi Heinonen3
Bitnarae Kim et al.
  • 1BRGM, Orléans, France
  • 2IRIS, Orléans, France
  • 3Geological Survey of Finland (GTK), Espoo, Finland
  • 4Geological Survey of Finland (GTK), Rovaniemi, Finland

In this study, we conducted an extensive geophysical survey to explore the potential of electrical resistivity methods in delineating deep ore deposits within between Koillismaa Intrusion and Näränkävaara intrusion, northeastern Finland. Preliminary investigations in 2022, including magnetic, gravity and audio-magnetotelluric (AMT) methods, along with drilling, uncovered significant anomalous structures in the survey area. Subsequent drilling of an exploration well provided positive lithological indications of a ultramafic igneous rock at more than 1.5 km depth, which are very likely of the same age as the layered intrusions in the area. Borehole data indeed revealed that the Archaean basement gneiss extends down to approximately 510 m, underlain by a granite dyke with interspersed thin layers of pyroxenite and peridotite. Notably, peridotite layers around 1500 m depth exhibited distinct magnetic and IP responses in core data.
We employed electrical methods at the site, including electrical resistivity tomography (ERT) and induced polarization (IP). To cover a large-scale area, 25 transmitter dipoles, each 1 km long and using three different transmitter systems, were deployed and data were recorded at 119 receiver stations. This work presents the acquisition and preliminary results from the ERT-IP surveys. During the processing of ERT and IP data, we utilized full time-series data recorded across the four lowest main frequencies (from 0.0625 Hz to 8Hz) to capture voltage data in a steady state. Apparent resistivity data were derived from the stacked voltage data, while IP data were initially extracted from these decay curves of these stacked voltage data and subsequently processed in the frequency domain (outphasing). Analysis of the resistivity and IP responses revealed notable IP signals at depths exceeding 1.5 km. Meanwhile, the resistivity data indicated generally very high values, around 10,000 ohm-m, with complex variations observed near the surface. This study demonstrates the efficacy of ERT and IP methods in delineating deep-seated mineral deposits, with the deep-depths IP responses being particularly noteworthy.

How to cite: Kim, B., Deparis, J., Darnet, M., Bretaudeau, F., Vedrine, S., Gance, J., Kamm, J., Autio, U., Patzer, C., and Heinonen, S.: Measuring Induced Polarization signals from deep seated magma chamber – preliminary results from a pilot survey in Finland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21924, https://doi.org/10.5194/egusphere-egu24-21924, 2024.