EGU24-236, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-236
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Role of pyrite on oxidative degradation of some chlorophenolic compounds with zero-valent iron/H2O2 system

Cetin Kantar1, Ozlem Oral1, and Ilker Yildiz2
Cetin Kantar et al.
  • 1Canakkale Onsekiz Mart University, Engineering Faculty, Environmental Engineering, Canakkale, Türkiye (ckantar@comu.edu.tr)
  • 2Middle East Technical University, Central Laboratory, 06800 Ankara, Turkey

The effect of a naturally occurring soil mineral, pyrite, on the degradation of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) by Fenton process with micro scale zero-valent iron (ZVI) as the catalyst was studied in batch reactors. Our batch data show that while the CP degradation with ZVI/H2O2 system was adversely affected by the aggregation of ZVP particles, the use of pyrite in systems containing ZVI/H2O2 greatly improved the oxidative degradation of CPs. Surface measurements, including salt titration, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), revealed that the ZVI particles and surface oxidation precipitates dispersed on pyrite particles, thus preventing ZVI particle aggregation, and subsequently promoting iron redox cycling for enhanced ZVI corrosion and surface site regeneration. Following Fenton degradation, the oxidative degradation intermediate species of CPs became significantly more biodegradable relative to their mother compounds. Overall, combining ZVI and pyrite at the optimum dose might be a cost-effective technology for developing novel treatment methods for the treatment of groundwater and wastewater contaminated with chlorophenolic chemicals.

How to cite: Kantar, C., Oral, O., and Yildiz, I.: Role of pyrite on oxidative degradation of some chlorophenolic compounds with zero-valent iron/H2O2 system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-236, https://doi.org/10.5194/egusphere-egu24-236, 2024.