Online databases of the geologic formations of Asia and Africa with display onto plate reconstructions
- 1IUGS Deep-time Digital Earth (DDE), Center of Excellent (Suzhou), West Lafayette, United States of America (jogg@purdue.edu)
- 2Key Lab of Deep-time Geography and Environment Reconstruction, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
- 3Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
- 4J.P. Morgan, Seattle and New York City, USA
- 5EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
- 6IUGS Deep-Time Digital Earth, Rajahmundry, Indi
- 7Geologic TimeScale Foundation, 1224 N Salisbury St., West Lafayette, IN 47906
Building paleogeographic maps that are projected onto different tectonic plate reconstruction models requires team efforts to compile extensive interlinked databases of regional sedimentary and volcanic facies, data sharing standards, and computer projection methods. Two goals of the Deep-Time Digital Earth (DDE) program of the International Union of Geological Sciences (IUGS) Paleogeography Working Group are: (1) to interconnect online national databases for all geologic formations, and to compile these online "lexicons" for countries that currently lack these; (2) to project the combined paleogeographic output of these distributed databases for any time interval onto appropriate plate tectonic reconstructions.
Therefore, we have worked with regional experts to compile and interlink cloud-based lexicons for different regions of the world that are enhanced by graphic user-interfaces. Online lexicons with map-based and stratigraphic-column navigation are currently completed for the Indian Plate (ca. 800 formations), China (ca. 3200), Vietnam-Thailand-Malaysia (ca. 600), and all major basins in Africa (ca. 700) and in the Middle East (ca. 700 formations). These will soon be joined by Japan (ca. 600 formations) and basins in South America (ca. 700 formations). A multi-database search system (age, region, lithology keywords, etc.) enables all returned entries be displayed by-age or in alphabetical order. The genera in the "fossil" field are auto-linked to their entries and images in the online Treatise of Invertebrate Paleontology. With a single click, a user can plot the original extent of the geologic formation (or an array of regional formations of a specified age) onto different plate reconstruction models with the polygon(s) filled with the appropriate lithologic facies pattern(s). Our team collaborated with the Macrostrat team at Univ. Wisconsin (Madison) to interlink with their extensive regional facies-time compilations for North America and the ocean basins to enable a near-global coverage. Following the lead of Macrostrat's ROCKD app, this project is in partnership with UNESCO's Commission for the Geologic Map of the World and other geological surveys to enable linking online geologic map units for direct access to the lexicon details on that geologic formation and its former paleogeographic setting. Essentially, goal is to create a view of the sediments and volcanics that were accumulating onto the Earth's surface at any time in the past.
The main website (https://geolex.org) has links to the growing array of regional lexicons.
How to cite: Ogg, J., Du, W., Sivathanu, A., Chang, S., Mishra, S., Zahirovic, S., Ault, A., Mamallapalli, O., Li, H., Hou, M., and Ogg, G.: Online databases of the geologic formations of Asia and Africa with display onto plate reconstructions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2473, https://doi.org/10.5194/egusphere-egu24-2473, 2024.
Comments on the supplementary material
AC: Author Comment | CC: Community Comment | Report abuse