EGU24-2660, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2660
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Understanding the inner magnetospheric drivers of the geospace plume evolution through magnetosphere-ionosphere coupling

Shanshan Bao1, Wenbin Wang2, Kareem Sorathia3, Viacheslav Merkin3, Frank Toffoletto1, Dong Lin2, Kevin Pham2, Jeffrey Garretson3, Michael Wiltberger2, John Lyon4, and Adam Michael3
Shanshan Bao et al.
  • 1Department of Physics and Astronomy, Rice University, Houston TX, United States of America
  • 2High Altitude Observatory, National Center for Atmospheric Research, Boulder CO, United States of America
  • 3Applied Physics Laboratory, Johns Hopkins University, Laurel MD, United States of America
  • 4Department of Physics and Astronomy, Dartmouth College, Hanover NH, United States of America

The geospace plume, referring to the combined processes of the plasmaspheric and the ionospheric storm-enhanced density (SED)/total electron content (TEC) plumes, is one of the unique features of geomagnetic storms. The apparent spatial overlap and joint temporal evolution between the plasmaspheric plume and the equatorial mapping of the SED/TEC plume indicate strong magnetospheric-ionospheric coupling. However, a systematic modeling study of the factors contributing to geospace plume development has not yet been performed due to the lack of a sufficiently comprehensive model including all the relevant physical processes. In this paper, we present a numerical simulation of the geospace plume in the March 31, 2001 storm using the Multiscale Atmosphere Geospace Environment model. The simulation reproduces the observed linkage of the two plumes, which, we interpret as a result of both being driven by the electric field that maps between the magnetosphere and the ionosphere. The model predicts two velocity channels of sunward plasma drift at different latitudes in the dusk sector during the storm main phase, which are identified as the sub-auroral polarization streams (SAPS) and the convection return flow, respectively. The SAPS is responsible for the erosion of the plasmasphere plume and contributes to the ionospheric TEC depletion in the midlatitude trough region. We further find the spatial distributions of the magnetospheric ring current ions and electrons, determined by a delicate balance of the energy-dependent gradient/curvature drifts and the E´B drifts, are crucial to sustain the SAPS electric field that shapes the geospace plume throughout the storm main phase.

How to cite: Bao, S., Wang, W., Sorathia, K., Merkin, V., Toffoletto, F., Lin, D., Pham, K., Garretson, J., Wiltberger, M., Lyon, J., and Michael, A.: Understanding the inner magnetospheric drivers of the geospace plume evolution through magnetosphere-ionosphere coupling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2660, https://doi.org/10.5194/egusphere-egu24-2660, 2024.