EGU24-2675, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2675
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

AGSDF: A Multiscale Attention Guided DeepOptimization Network for Spatiotemporal Fusion

Decai Jin
Decai Jin
  • beijing normal university, Faculty of Geographical Science, State Key Laboratory of Remote Sensing Science, China (decai.jinr@gmail.com)

Satellites strive to strike a delicate balance between temporal and spatial resolution, thereby rendering the achievement of high resolution in both aspects challenging. In particular, Earth observations at sub-daily intervals are more diffuclt. Spatiotem-poral fusion algorithms have emerged as a promising solution to tackle this challenge. However, the current spatiotemporal fusion methods still face a critical challenge: accurately and efficiently predicting fine images in large-scale area applications, while en-suring robustness. To address this challenge, the study proposes a multiscale Attention-Guided deep optimization network for Spatiotemporal Data Fusion (AGSDF) method. An optimization strategy is employed to directly predict high-resolution image at multi-scales based coarse-resolution image. Specifically, a varia-tion attention module is proposed to focus on the edges and tex-tures of abrupt land cover changes. The spatiotemporal fusion kernel is developed to provide essential spatial details for spatio-temporal fusion. Furthermore, the implementation of spatiotem-poral fusion at multiple scales improves the reliability of predic-tion. The performance and robustness of AGSDF were evaluated and compared to nine methods at six sites worldwide. The exper-imental results indicate that AGSDF achieves a better overall performance in quantitative accuracy assessment, transfer ro-bustness, predictive stability and efficiency. Consequently, AGSDF holds the high potential to produce accurate remote sens-ing products with high temporal and spatial resolution across extensive regions.

How to cite: Jin, D.: AGSDF: A Multiscale Attention Guided DeepOptimization Network for Spatiotemporal Fusion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2675, https://doi.org/10.5194/egusphere-egu24-2675, 2024.