EGU24-2973, updated on 12 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2973
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Divergent microbial phosphorous acquisition strategies between active layer and permafrost deposits

Lu Wang and Yuanhe Yang
Lu Wang and Yuanhe Yang
  • Chinese Academy of Sciences, Insititue of Botany, China (luwang@ibcas.ac.cn)

It has been advocated that nitrogen (N) availability plays an essential role in mediating plant and microbial growth in cold environment, and could thus regulate the direction and magnitude of permafrost carbon (C)-climate feedback. However, compared to widely concerned N, little is known about soil phosphorous (P) availability and its biological acquisition strategies in permafrost environment. Here we explored soil microbial P acquisition strategies using shotgun metagenomics across the Tibetan permafrost area, encompassing a large scale survey spanning 1,000 km. In contrast to the traditional opinion that microorganisms in cold area usually obtain P mainly through mineralization process, our results revealed that the P cycling genes responsible for solubilization, mineralization and transportation were widespread, illustrating multiple microbial strategies for acquiring P in permafrost regions. Moreover, the higher gene abundance related to solubilization and mineralization as well as an increased ration of MAGs carrying these genes were detected in the active layer, while the greater abundance of low affinity transporter gene (pit) and proportions of MAGs harbouring pit gene were observed in permafrost deposits, reflecting a stronger potential for P activation in active layer but an enhanced P transportation potential in permafrost deposits. Taken together, these results highlight that besides microbial P mineralization, multiple P-related acquisition strategies and their differences among various soil layers should be considered simultaneously to improve model prediction for the responses of biogeochemical cycles in permafrost ecosystems to climate change.

How to cite: Wang, L. and Yang, Y.: Divergent microbial phosphorous acquisition strategies between active layer and permafrost deposits, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2973, https://doi.org/10.5194/egusphere-egu24-2973, 2024.