EGU24-3021, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3021
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Contribution of programming language to novel mine risk assessment project

Pieride Mabe Fogang and Bingjie Huo
Pieride Mabe Fogang and Bingjie Huo

When excavating a tunnel, the stresses are distributed asymmetrically along the tunnel cross-section. Other factors, particularly slope friction force and excavation speed, can also contribute to the deformation and displacement of a tunnel. Despite this, several authors have used the complex potential method to predict the ground deformation surrounding the tunnel. However, their applicability to the ground response caused by the asymmetric stress distribution around the mine wall is analyzed in this context. This project, therefore, proposes an approximate solution on the slope to predict the mine cross-section deformation. The solution is based on the complex potential method to predict analytically and numerically the ground deformation around the tunnel. However, two variables called the “complex potential functions” for the Laurent series expansion are used for the stress redistribution to the tunnel boundary conditions. Data from the Datong mine case are used to justify the proposed analytical solutions. The solution is an essential guide for analyzing deformations in complex geological conditions and structures, such as steeper slopes.

How to cite: Mabe Fogang, P. and Huo, B.: Contribution of programming language to novel mine risk assessment project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3021, https://doi.org/10.5194/egusphere-egu24-3021, 2024.