Links between weather variability and Dengue outbreaks in Sao Paulo, Brazil
- 1Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic (falaknazchanna@gmail.com)
- 2Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic (urban@ufa.cas.cz)
- 3Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- 4University of São Francisco, Bragança Paulista, Brazil
- 5Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
Mosquito-borne diseases are among the most dangerous threats for all people living in tropical areas. Previous research has shown that the highest incidence of mosquito-borne diseases is associated with a particular type of weather (usually wet and hot) as mosquitos’ activity and development are highly dependent on meteorological conditions. However, short-term associations (on the scale of days up to a few weeks) have been less understood.
In this study, we collected weekly data on the incidence of Dengue on a municipality level in the state of Sao Paulo, Brazil, 2016–2022, and matched it with ERA5-based weather variables (ambient temperature, relative humidity, wind speed and precipitation). We employed a multilevel meta-regression analysis to i) analyse the links between Dengue incidence and weather variability in, and ii) develop a model to predict a Dengue fever outbreak based on actual weather conditions and socioeconomic variables.
Our preliminary results suggest a significant association of a Dengue outbreak with above-average daily mean temperature and humidity, heavy rainfalls, and calm conditions in previous 2-6 weeks. Further analysis is needed to identify spatial differences in these patterns based on socioeconomic conditions.
How to cite: Naz, F., Araújo, J., Oliveira, S., Celina, S., Urban, A., and Černý, J.: Links between weather variability and Dengue outbreaks in Sao Paulo, Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3061, https://doi.org/10.5194/egusphere-egu24-3061, 2024.