EGU24-3547, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3547
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

ECOMAN 2.0: an open-source software package for coupling geodynamic and seismological modelling.

Manuele Faccenda1, Brandon VanderBeek1, Albert de Montserrat2, and Jianfeng Yang3
Manuele Faccenda et al.
  • 1Università di Padova, Università di Padova, Dipartimento di Geoscienze, Padova, Italy (manuele.faccenda@unipd.it)
  • 2Institut für Geophysik, Dep. of Earth Sciences, ETH Zurich, Zurich, Switzerland
  • 3Institute of Geology and Geophysics, Chinese Academy of Sciences.

In this contribution we introduce ECOMAN 2.0, an open-source software package for (1) modelling the strain-/stress-induced rock fabrics and related mechanical anisotropy, and (2) performing isotropic and anisotropic inversions using real/synthetic P- and S-wave travel-times and S-wave splitting parameters.  

The strain-induced intrinsic mantle fabrics are modelled inputting the velocity, pressure, temperature and dominant creep mechanism fields from large-scale mantle flow simulations into D-Rex (Kaminski et al., 2004). This open-source software has been parallelized using a hybrid MPI and OpenMP scheme and modified to account for combined diffusion-dislocation creep mechanisms, LPO of transition zone and lower mantle polycrystalline aggregates (Wadsleyite, Bridgmanite, post-Perovskite), P-T dependence of single crystal elastic tensors, advection and non-steady-state deformation of crystal aggregates in 2D/3D cartesian/spherical grids (Faccenda, 2014; Faccenda and Capitanio, 2013). The new version of D-Rex can solve for the LPO evolution of 100.000s polycrystalline aggregates of the whole mantle in a few hours, outputting the full elastic tensor of poly-crystalline aggregates as a function of each single crystal orientation, volume fraction and elastic moduli scaled by the local P-T conditions.

Extrinsic elastic anisotropy due to grain- or rock-scale fabrics or fluid-filled cracks can also be estimated with the Differential Effective Medium (DEM) (Faccenda et al., 2019). Similarly, extrinsic viscous anisotropy can be modelled yielding viscous tensors to be used in large-scale mantle flow simulations (de Montserrat et al., 2021). 

The elastic tensors can then be interpolated in a tomographic grid for (i) visual inspection of the mantle elastic properties (such as Vp and Vs isotropic anomalies; radial, azimuthal, Vp and Vs anisotropies), (ii) generating input files for large-scale synthetic waveform modelling (e.g., SPECFEM3D format), or (iii) P- and S-wave isotropic and anisotropic inversions (e.g., Faccenda and VanderBeek, 2023). The latter can be performed with the new PSI (Platform for Seismic Imaging) module, which includes recently developed techniques for seismic anisotropic inversions of body waves (VanderBeek and Faccenda, 2021; VanderBeek et al., 2023).

How to cite: Faccenda, M., VanderBeek, B., de Montserrat, A., and Yang, J.: ECOMAN 2.0: an open-source software package for coupling geodynamic and seismological modelling., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3547, https://doi.org/10.5194/egusphere-egu24-3547, 2024.