EGU24-3664, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3664
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying Methane Emissions Using Satellite Data: Integrated Methane Inversion (IMI) Model Application for Denmark

Angel Vara-Vela1, Christoffer Karoff1, Noelia Rojas Benavente2, and Janaina Nascimento3
Angel Vara-Vela et al.
  • 1Aarhus University, Department of Geoscience, Aarhus, Denmark (angel@geo.au.dk)
  • 2University of São Paulo, Institute of Physics, São Paulo, Brazil
  • 3NOAA ESRL Global Systems Laboratory, Boulder, United States

After decades of steady growth, even reaching a growth rate of approximately zero from 2000 to 2006, the atmospheric methane (CH4) has returned to values observed in the second half of the twentieth century, and in recent years it has increased at a faster rate (Palmer et al., 2021). In this context, major initiatives involving the use of satellite-based inversion approaches have been implemented to respond to a growing demand from the climate community. One of this initiatives is the Integrated Methane Inversion (IMI, Varon et al., 2022). IMI is a cloud-based facility developed to infer regional CH4 emissions at 0.25° × 0.3125° resolution, with dynamic boundary conditions from a global archive of smoothed TROPOspheric Monitoring Instrument (TROPOMI) data. Three monthly IMI simulations were conducted over Denmark to estimate CH4 emissions before (June 2018), during (June 2020), and after (June 2021) the COVID-19-related lockdowns. The calculated a posteriori emissions for these periods were 0.579 Tg yr-1, 0.396 Tg yr-1, and 0.553 Tg yr-1, respectively. The approximately 31% emission reduction in June 2020 was almost swiftly reversed in June 2021, with a reduction of emissions in June 2021 by less than 5% compared to the same period in 2018. As many months other than June do not frequently meet the IMI preview configuration (a model feature to rate the quality of a proposed inversion without actually performing the inversion), multi-period simulations are being conducted to characterize CH4 emissions across the country. The new CH4 emissions data set will serve as a benchmark to evaluate the model performance of the Aarhus University Methane Inversion Algorithm (AUMIA, Vara-Vela et al., 2023). Currently under development, AUMIA is a satellite-based tool designed to quantify CH4 emissions over Europe, with a specific focus on anthropogenic activities.

References

Palmer, P. L., Feng, L., Lunt, M. F., Parker, R. J., Bosch, H., Lan, X., Lorente, A., and Borsdorff, T.: The added value of satellite observations of methane for understanding the contemporary methane budget, Philos. T. R. Soc. A., 379, 2210, https://doi.org/10.1098/rsta.2021.0106, 2021.

Vara-Vela, A. L., Karoff, C., Benavente, R. N., and Nascimento, J. P.: Implementation of a satellite- based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data, Geosci. Model Dev., 16, 6413-6431, 2023.

Varon, D. J., Jacob, D. J., Sulprizio, M., Estrada, L. A., Downs, W. B., Shen, L., Hancock, S. E., Nesser, H., Qu, Z., Penn, E., Chen, Z., Lu, X., Lorente, A., Tewari, A., and Randles, C. A.: Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high- resolution methane emissions from TROPOMI satellite observations, Geosci. Model Dev., 15, 5787-5805, 2022.

How to cite: Vara-Vela, A., Karoff, C., Rojas Benavente, N., and Nascimento, J.: Quantifying Methane Emissions Using Satellite Data: Integrated Methane Inversion (IMI) Model Application for Denmark, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3664, https://doi.org/10.5194/egusphere-egu24-3664, 2024.