EGU24-3672, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3672
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A Unified Model of Crustal Stress Heterogeneity from Borehole Breakouts and Earthquake Focal Mechanisms 

Jeanne Hardebeck1 and Karen Luttrell2
Jeanne Hardebeck and Karen Luttrell
  • 1US Geological Survey, Moffett Field, California, United States of America (jhardebeck@usgs.gov)
  • 2Louisiana State University, Baton Rouge, Louisiana, United States of America (kluttrell@lsu.edu)

Observations of crustal stress orientation from the regional inversion of earthquake focal mechanisms often conflict with those from borehole breakouts. In particular, stress orientations from focal mechanism inversion tend to show little heterogeneity on length scales of kms to 10s of km, while borehole stress measurements often exhibit substantial short-length-scale heterogeneity.  Some of the difference may be because the two methods sample different locations within the crust, possibly indicating local stress heterogeneity, either laterally or with depth. We attempt to reconcile these two types of stress measurements, and investigate the implications for crustal stress heterogeneity. We compiled SHmax estimates from previous studies for 57 near-vertical boreholes with measured breakout azimuths across the Los Angeles region. We identified subsets of earthquake focal mechanisms from established earthquake catalogs centered around each borehole with various criteria for maximum depth and maximum lateral distance from the borehole. Each subset was independently inverted for 3-D stress orientation, and the SHmax direction compared with the corresponding borehole breakout-derived estimate. We find good agreement when both methods sample the basement stress (breakouts are close to the sediment-basement interface), or when both methods sample the mid- basin stress (sufficient earthquakes are present within a sedimentary basin). Along sedimentary basin margins, in contrast, we find acceptable agreement only when focal mechanisms are limited to shallow and close earthquakes, implying short-length-scale heterogeneity of <20 km. While the region as a whole shows evidence of both lateral and vertical stress orientation heterogeneity, we find a more homogeneous stress state within basement rock, over length scales of 1–35 km. These results reconcile the apparently conflicting observations of short-length-scale heterogeneity observed in boreholes, which sample primarily the basins, with the relative homogeneity of stress inferred from focal mechanisms, which sample primarily the basement.

How to cite: Hardebeck, J. and Luttrell, K.: A Unified Model of Crustal Stress Heterogeneity from Borehole Breakouts and Earthquake Focal Mechanisms , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3672, https://doi.org/10.5194/egusphere-egu24-3672, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 29 Mar 2024, no comments