EGU24-395, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-395
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Beyond Extreme Temperature: Spatiotemporal Analysis of Humid Heat Stress 

Jency Maria Sojan and Jayaraman Srinivasan
Jency Maria Sojan and Jayaraman Srinivasan
  • Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India (jencymaria@iisc.ac.in)

Extreme humid heat stress presents significant challenges to human health and productivity. Traditional heat action plans formulated to tackle dry heat stress are insufficient to address the complexities associated with humid heat stress. Furthermore, there is limited quantitative evidence on the evolving patterns of humid heat stress under changing climate. This study investigates the spatiotemporal trends of extreme heat stress across the Global South from 1964 to 2023, distinguishing between dry and humid heat, using high-resolution ERA5 reanalysis hourly data and the Heat Index (HI).

Notably, South Asia and the Middle East experience the highest frequency of extremely humid heat stress. Specific regions in peninsular South Asia have extremely humid heat stress hours from May to June due to persistent high humidity levels. In contrast, western regions of South Asia encounter extreme dry heat stress preceding the monsoon season, followed by a transition to humid heat stress immediately after the onset of the monsoon. The temporal analysis reveals a more rapid increase in the occurrence of extremely humid heat stress compared to that of dry heat stress from May to July over the past 60 years. This underscores the evolving nature of heat stress and the intensification of humid conditions compared to dry ones.

In conclusion, this study advocates for a shift from exclusively addressing dry stress to a comprehensive approach that accounts for the diverse impacts of humid heat stress, particularly on vulnerable populations. This understanding is critical for policymakers to formulate adaptive strategies tailored to the changing landscape of extreme heat stress. 

How to cite: Sojan, J. M. and Srinivasan, J.: Beyond Extreme Temperature: Spatiotemporal Analysis of Humid Heat Stress , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-395, https://doi.org/10.5194/egusphere-egu24-395, 2024.