EGU24-4130, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4130
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Diverse modes of macropore flow—How to include them in predictive models?

John R. Nimmo
John R. Nimmo
  • Unsaturated Flow Research, Menlo Park, United States of America (jrnimmo.ufr@rubydoor.org)

Films, rivulets, snapping rivulets, sliding drops, slugs—many flow modes besides filled-tube, Poiseuille-type flow occur in macropores. Some of these fit reasonably into Darcian formulations and the analog of laminar viscous flow in water-filled tubes. But others do not. These exceptions may be the main reason for failures to predict the speed and travel distance of preferential flow.

A useful first step for an improved model of macropore flow is the classification of diverse flow modes into categories based on their intrapore boundary conditions. Within a flowing macropore, the gas-liquid and liquid-solid interfaces, with the effects of interfacial constraints such as surface tension and contact angles, determine the geometry of the flowing liquid phase and its controlling frictional influences. A classification scheme with four categories can account for the various flow modes that have been observed in lab and field experiments. This categorization helps to distinguish which flow modes are amenable to Darcian or Poiseuille-type representation and which are not. Some of the exceptions are approachable with wave or film-flow concepts as in several recently-developed models. Yet there are other flow modes that do not fit well in any of these models, and in some cases these may be the most important means of rapid and long-distance transport. Other sorts of physical processes may provide suitable analogs for these, for example free-fall concepts like initial acceleration, speed-dependent frictional forces, and terminal velocity. In any case, the diversity of macropore flow modes needs to be considered in the development of markedly improved models of preferential flow.

How to cite: Nimmo, J. R.: Diverse modes of macropore flow—How to include them in predictive models?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4130, https://doi.org/10.5194/egusphere-egu24-4130, 2024.