Study on energy and displacement evolution of rock slope during the development of landslide by multi-scale modeling
- National Chiao Tung University, Engineering, Civil engineering, Taoyuan, Taiwan, Province of China (teddywu110@gmail.com)
Slope monitoring is a commonly way to mitigate the hazard of landslide. The displacement is one of the main parameters being used in slope monitoring, however it is not significant until landslide occurs. According to the literature, energy will accumulate, transfer and dissipate during the development of landslide. So, it is possible to take energy as one of parameters used in slope monitoring if it’s property was understood sufficiently. This study is aimed to find the relationship between energy evolution, displacement of sliding mass and mechanical behavior of rock materials during the development of landslide. In addition, the energy data and displacement data were compared to find the difference between them. Science the mechanical properties of rock mass is affected by scale, four kind of numerical models were created using different scales. Then the energy data and displacement data of specific particles inside each models were recorded during the simulation. The small-scale models include direct shear test model and uniaxial compression test model. The large-scale models include simplified toppling failure model and full-scale landslide model. The results show that in the large-scale models, the variation of energy data is more significant than displacement data. However, in the small-scale models, the variation of displacement data is more significant.
How to cite: Wu, Y. C. and Lo, C. M.: Study on energy and displacement evolution of rock slope during the development of landslide by multi-scale modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4336, https://doi.org/10.5194/egusphere-egu24-4336, 2024.