EGU24-4461, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4461
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global variations in the dip geometry of oceanic transform faults

Alexandre Janin, Mark D. Behn, and Xiaochuan Tian
Alexandre Janin et al.
  • Department of Earth & Environmental Sciences, Boston College, Chestnut Hill, MA, USA

Little is known about the geometry of oceanic transform faults.  Although their surface trace and curvature along kinematic small circles has been known since the advent of plate tectonics, their structure at depth remains poorly constrained. The classical assumption is that oceanic transform faults are vertical and delimited at depth by the 600°C isotherm. It is only recently that the deployment of local OBS arrays on major oceanic transform faults have allowed us to investigate their geometry at depth and the link with their seismicity.  Seismic moment tensors of teleseismic events also contain first order information about the geometry of oceanic transform faults, giving us access to the dip of the fault plane that has ruptured.  Abercrombie and Ekström (2001) investigated focal mechanisms along the Chain transform fault (TF) in the equatorial Atlantic Ocean, which indicated a consistent northward dip of the fault along its entire 300-km length.
In this study, we take advantage of the increasing data from global seismic catalogs and conduct a statistical exploration of the dip variations of strike-slip focal mechanisms along more than 80 oceanic transform faults.  Most of them are either vertical to subvertical, depending on the local variability of the data, or show no preferential dip towards a given side of the fault. Although the optimal dip for a strike-slip fault in a classical Andersonian stress state is vertical, we show here that the case of the Chain TF is not isolated and several other oceanic transform faults show a similar deviation to the vertical, including Owen TF in the Indian Ocean, Vema TF in the Atlantic Ocean, and Tharp TF along the Pacific-Antarctic ridge. The measured deviations to the vertical show a maximum at ~20° (dip 70°).   We discuss our observations within the tectonic setting and history of each of these plate boundaries, and speculate on the implications of this maximum dip for the mechanical properties and/or stress conditions in oceanic lithosphere. 

How to cite: Janin, A., Behn, M. D., and Tian, X.: Global variations in the dip geometry of oceanic transform faults, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4461, https://doi.org/10.5194/egusphere-egu24-4461, 2024.