EGU24-4491, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4491
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Silicone availability and NaCl water type enhances the phosphorus release from sediments in coastal forest catchments in Akita, Japan

Atsushi Hayakawa1, Yuka Kuroe1, Ayumi Kawata1, Kazuya Nishina2, Yuichi Ishikawa1, and Tadashi Takahashi1
Atsushi Hayakawa et al.
  • 1Akita Prefectural University, Akita, Japan (hayakawa@akita-pu.ac.jp)
  • 2National Institute for Environmental Studies, Tsukuba, Japan

[Background] Phosphorus (P) availability in soils and sediments is a critical parameter influencing primary production in terrestrial and aquatic ecosystems, controlled by both P chemical fractions in solid phase and solution composition. A recent study using Arctic soils reported that the addition of Si to the soil released P bound to Fe(II) compounds, but reports on other soils and sediments are limited. In our previous study, we detected higher P concentrations in stream water and iron-bound P content in river sediments in the marine sedimentary rock catchments of the Akita coastal area compared to catchments in the adjacent igneous rock area. Furthermore, high-P stream waters were NaCl water type with relatively lower Ca2+ and higher SiO2 concentrations. In this study, we evaluated the effects of different solution compositions and amorphous Si addition on P solubilization in sediments using river sediments from marine sedimentary and igneous rock regions. [Method] We tested each five river sediments (<2 mm) in the headwaters of western Akita Prefecture, Japan, where the surface geology is composed of marine sedimentary rocks and igneous rocks. Available Si (easily water-soluble Si) was measured by a long-term flooded incubation in distilled water at 30°C for 30 days. In the P dissolution incubation, four types of treatment solutions (distilled water, 1 mM NaCl and NaHCO3 solutions, and 0.5 mM CaCl2 solution) were added to 0.5 g sediment and in the Si addition treatment, amorphous Si (hydrophilic fumed silica, AEROSIL300) was also added. SRP, DOC and pH in the solution were measured after shaking for 48 hours. A statistical analysis was performed using a linear mixed model (LMM) with SRP, DOC and pH in the liquid phase as objective variables. The surface geology, four types of solutions, and the Si addition as explanatory variables. Additionally, each five sediment was treated as a random effect. [Results and discussion] Easily water-soluble Si content in sediments was significantly higher in marine sedimentary rock areas (p < 0.001), indicating that the easily soluble Si causes higher SiO2 concentration in stream water. The incubation results showed Si addition significantly increased P concentration in the liquid phase (p < 0.001), and combined Si addition with NaHCO3 treatment further increased P concentration. Conversely, CaCl2 treatment significantly decreased the liquid-phase P concentration. The influence of surface geology on extracted P concentration was not significant. Si addition did not affect pH (p = 0.58) and DOC (p = 0.90), while the effects of solution composition on pH and DOC were also significant; NaHCO3 solution increased pH and DOC while CaCl2 solution decreased pH and DOC. In conclusion, in marine sedimentary rock areas in coastal Akita with NaCl water type where Ca2+ concentration is relatively low and sediments have higher easily soluble Si, P release from sediments easily occurs and a high P concentration keeps in the liquid phase.

How to cite: Hayakawa, A., Kuroe, Y., Kawata, A., Nishina, K., Ishikawa, Y., and Takahashi, T.: Silicone availability and NaCl water type enhances the phosphorus release from sediments in coastal forest catchments in Akita, Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4491, https://doi.org/10.5194/egusphere-egu24-4491, 2024.