Energetic protons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves into the upper atmosphere. This process represents a crucial mechanism for the exchange of energy and particles between the magnetosphere and ionosphere. In this study, quasi-periodic EMIC waves induced by Pc4 ULF waves were observed by the Van Allen Probes (RBSP) B satellite during a magnetic storm event on September 8, 2017. The associated pitch angle diffusion coefficient 𝐷𝛼𝛼 reveals that the quasi-periodic EMIC waves predominantly affect 30-100 keV protons. Concurrently, RBSP-B measurements indicated a remarkable quasi-periodic enhancement in the proton flux near the loss cone, with a frequency consistent with EMIC wave packets. Observations from the NOAA-19 satellite exhibited a substantial increase in 30-100 keV proton precipitating fluxes. Periodic proton precipitation resulted in clearly quasi-periodic enhancements of electron density in the ionospheric E-region detected by the European Incoherent Scatter (EISCAT) radar.
How to cite:
Ma, L., Yu, Y., Tong, X., Tang, L., Liu, W., Cao, J., Wu, J., and Wu, J.: Ionospheric responses modulated by quasi-periodic EMIC waves associated with ULF waves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4512, https://doi.org/10.5194/egusphere-egu24-4512, 2024.
Share
Please decide on your access
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.