EGU24-4550, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4550
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterizing shallow creep along the Dead Sea pull-apart basin using geodetic observations

Yariv Hamiel1 and Roger Bilham2
Yariv Hamiel and Roger Bilham
  • 1Geological Survey of Israel, Jerusalem, Israel (yariv@gsi.gov.il)
  • 2Department of Geological Sciences, University of Colorado, Boulder, CO, USA

We use geodetic measurements to characterize aseismic deformation along the western boundary fault of the Dead Sea pull-apart basin, which is located at the southern part of the sinistral Dead Sea Fault. This research provides constraints on patterns and timescales of deformation and its dependence on regional tectonics and the rheology of the upper crust. We use creepmeter, GNSS, InSAR and airborne LiDAR observations and show transient aseismic slip on the western boundary fault of the Dead Sea basin. A biaxial creepmeter with a 30 s sampling interval was installed in early 2021 showing high extensional deformation (an average rate of ~8.6 mm/yr), which is consistent with the ~30 cm of subsidence recorded 2017-2019 differential LiDAR data. The data imply modulated slip on a 60° dipping normal fault with maximum slip rates of ~0.5 µm/hour starting in late August and varying close to zero in late April. We attribute these large movements to local tectonics, sediment compaction, thermo-elastic response and dissolution of subsurface salt responsible for the formation of sink-holes in the region. The creepmeter measurements also show some sinistral deformation with an average rate of ~2.1 mm/yr, comparable to the rate of 2.5±0.4 mm/yr that was observed for the Sedom Fault, the southernmost segment of the western boundary fault, using GNSS data. Several minor creep events were detected by the creepmeter. The 19 Feb 2022 creep event lasted more than an hour following heavy rain in this area with abrupt sinistral slip of ~2.5 mm preceding dilation and dip-slip by 20 minutes. Small Baseline Subset (SBAS) analysis of InSAR data reveals up to 7mm/yr of line-of-sight deformation across the western boundary fault, north of the creepmeter. It also reveals high subsidence rate (up to ~20 mm/yr) along the southern shores of the Dead Sea Lake that can be explained by high compaction rate of clay sediments and reduction of pore pressure along the lake shores. This high subsidence rate is also observed in our near shore GNSS stations. Our results indicate that deformation within the Dead Sea basin is not solely controlled by the active tectonics. The observed vertical deformation is apparently modulated by the response of sediments to seasonal variations of local conditions.

How to cite: Hamiel, Y. and Bilham, R.: Characterizing shallow creep along the Dead Sea pull-apart basin using geodetic observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4550, https://doi.org/10.5194/egusphere-egu24-4550, 2024.