EGU24-4618, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4618
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Numerical simulations of the mesospheric region for sprite inception in winter thunderstorms over the Eastern Mediterranean

Carynelisa Haspel1 and Yoav Yair2
Carynelisa Haspel and Yoav Yair
  • 1The Hebrew University of Jerusalem, The Fredy and Nadine Herrmann Institute of Earth Sciences, Jerusalem, Israel (carynelisa.haspel@mail.huji.ac.il)
  • 2Reichman University, School of Sustainability, Herzliya, Israel (yoav.yair@runi.ac.il)

Winter thunderstorms often exhibit compact vertical dimensions and lower heights of the major charge centers and are often accompanied by strong wind shear, with a propensity for positive cloud-to-ground strokes that can produce mesospheric transient luminous events (e.g. sprites, haloes, elves and jets). There are many optical observations confirming this over the Sea of Japan and the Mediterranean Sea, which are known to be the most convectively active regions during Northern Hemisphere winter.

We use a 3D quasi-electrostatic model (Haspel et al., 2022) with wintertime thunderstorm charge configurations to evaluate sprite inception regions in the mesosphere under various conditions typical of the Eastern Mediterranean. This is a is a relatively new, numerically robust model based on an analytical solution to Poisson’s equation that was developed specifically to handle non-symmetric charge configurations in a large 3D domain.  We address several key questions related to the onset of sprites in winter: (a) the minimum charge that enables sprite inception under the compact thunderstorm structures, (b) the effect of wind shear (lateral offsets of 3-5 km between the cloud charge centers) on the electric field and the location of the area of possible sprite inception, and (c) how the time difference between consecutive strokes in adjacent cumulonimbus clouds affects the size and location of the area of possible sprite inception. Additionally, we will present results of sensitivity studies on the discharge time and profile, showing how the area of possible sprite inception depends on this factor.

 

Reference

Haspel, C., G. Kurtser and Y. Yair (2022). The feasibility of a 3D time-dependent model for predicting the area of possible sprite inception in the mesosphere based on an analytical solution to Poisson's equation. Jour. Atmos. Sol. Terr. Phys.,230, 105853, doi:10.1016/j.jastp.2022.105853.

How to cite: Haspel, C. and Yair, Y.: Numerical simulations of the mesospheric region for sprite inception in winter thunderstorms over the Eastern Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4618, https://doi.org/10.5194/egusphere-egu24-4618, 2024.