EGU24-4782, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4782
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Recent and near-term future changes in impacts-relevant seasonal hydroclimate in the world's Mediterranean climate regions

Richard Seager1, Yutian Wu1, Annalisa Cherchi2, Isla Simpson3, Timothy Osborn4, Yochanan Kushnir1, Jelena Lukovic5, Haibo Liu1, and Jennifer Nakamura1
Richard Seager et al.
  • 1Columbia University, Lamont Doherty Earth Observatory, Ocean and Climate Physics, Palisades, United States of America (seager@ldeo.columbia.edu)
  • 2Istituto di Scienze dell'Atmosfera e del Clima, Bologna, Italy
  • 3NSF National Center for Atmospheric Research, Boulder, Colorado, US
  • 4Climatic Research Unit, University of East Anglia, Norwich, UK
  • 5University of Belgrade, Belgrade, Serbia

Change over recent decades in the world's five Mediterranean Climate Regions (MCRs) of quantities of relevance to water resources, ecosystems and fire are examined for all seasons and placed in the context of changes in large-scale circulation. Near-term future projections are also presented.   It is concluded that, based upon agreement between observational data sets and modeling frameworks, there is strong evidence of radiatively-driven drying of the Chilean MCR in all seasons and southwest Australia in winter.  Observed drying trends in California in fall, southwest southern Africa in fall, the Pacific Northwest in summer and the Mediterranean in summer agree with radiatively-forced models but are not reproduced in a model that also includes historical sea surface temperature (SST) forcing, raising doubt about the human-origin of these trends. Observed drying in the Mediterranean in winter is stronger than can be accounted for by radiative forcing alone and is also outside the range of the SST-forced ensemble. It is shown that near surface vapor pressure deficit (VPD) is increasing almost everywhere but that, surprisingly, this is contributed to in the southern hemisphere subtropics to mid-latitudes by a decline in low level specific humidity.  The southern hemisphere drying, in terms of precipitation and specific humidity, is related to a poleward shift and strengthening of the westerlies with eddy-driven subsidence on the equatorward side. Model projections indicate continued drying of southern hemisphere MCRs in winter and spring, despite ozone recovery and year-round drying in the Mediterranean.  Projections for the North American MCR are uncertain, with a large contribution from internal variability, with the exception of drying in the Pacific Northwest in summer.  Overall the results indicate continued aridification of MCRs other than in North America with important implications for water resources, agriculture and ecosystems. 

How to cite: Seager, R., Wu, Y., Cherchi, A., Simpson, I., Osborn, T., Kushnir, Y., Lukovic, J., Liu, H., and Nakamura, J.: Recent and near-term future changes in impacts-relevant seasonal hydroclimate in the world's Mediterranean climate regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4782, https://doi.org/10.5194/egusphere-egu24-4782, 2024.