EGU24-4834, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4834
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impacts of anthropogenic land use and land cover change on climate extremes based on CMIP6-LUMIP experiments

Meng Zhang1 and Yanhong Gao2
Meng Zhang and Yanhong Gao
  • 1Fudan University, Institute of Atmospheric Science, Department of Atmospheric and Oceanic Sciences, China (zhangmeng20@fudan.edu.cn)
  • 2Fudan University, Institute of Atmospheric Science, Department of Atmospheric and Oceanic Sciences, China (gaoyh@fudan.edu.cn)

Assessing the impacts of anthropogenic land use and land cover change (LULCC) on climate extremes is of public concern, calling for the use of state-of-the-art experiments and datasets to update our knowledge. Here, we used the CMIP6-LUMIP experiment results to depict the realistic LULCC effects on extreme temperature and extreme precipitation over both historical and future periods. We pointed out some interesting findings over the historical period: Approximately 1oC decrease in the maximum temperature, and up to nearly 2oC decrease in the minimum temperature in the mid-high latitude of the North Hemisphere. About 10 annual heatwave days can be avoided by LULCC effects in 10% of specific LULCC-intense regions. Three LULCC-intense regions in the North Hemisphere have experienced cooling effects in intensity, frequency, and duration aspects. The precipitation displayed a clear contrast change between the North Hemisphere (wetter) and the South Hemisphere (drier), especially on light rainy days (R1mm). Results of the future period indicate that the tropical deforestation regions are projected to induce a remarkably hotter and drier trend. However, the climate responses averaged globally to deforestation have no obvious changes due to the colder and wetter compensation responses in other regions. The maximum temperature increase in deforestation regions is prominent in intensity, frequency, and duration aspects, while the drought is mainly manifested by frequency and duration reduction of precipitation. Seasonal cycle of changes in temperature indices can be discovered in the North Hemisphere mid-latitude deforestation region, tropical region shows year-round consistency. Changes in LULCC induced climate extremes are more obvious under the low-emission scenario in general. Our work is devoted to portraying the latest and more realistic picture of LULCC impacts on climate extremes and gives early warning information to policymakers and the public.

How to cite: Zhang, M. and Gao, Y.: Impacts of anthropogenic land use and land cover change on climate extremes based on CMIP6-LUMIP experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4834, https://doi.org/10.5194/egusphere-egu24-4834, 2024.