Effective fracturing strategy considering natural fracture, stress interference and rock component—A practical application of Dingshan block in Sichuan Province of China
- Sinopec East China Petroleum Engineering Co., LTD Postdoctoral Workstation: Beijing, Petroleum Engineering, China (2018312076@student.cup.edu.cn)
Horizontal well multi-stage and multi-cluster fracturing technology has played an important role in unconventional reservoir development. However, traditional methods rarely investigated fracturing fluid flow characteristics in reservoirs with abundant natural fractures. Furthermore, affected by the stress interference from dense number of fracturing clusters, some perforations do not form fractures. For deep shale reservoirs, failure to consider these contents may result in unsatisfactory fracturing results for deep shale reservoirs.
An innovative approach is introduced in this paper. This innovation can be based on natural fracture development, fracture propagation law and reservoir composition characteristics. The flow regularity of fracturing fluid inside natural fractures was characterized through CT scanning experiments. Numerical simulation is used to analyze fracture propagation in fracturing horizontal well with multi-stage and multi-cluster. Core full component test experiment was conducted to analyze compressibility. In response to the above results, different fracturing process is adopted, the length of fracturing section is adjusted, the number of fracturing clusters is set. Then the fracturing design scheme of each segment is formulated and the fracturing effect and operation lessons of actual wells are analyzed.
The results show that obvious pressure interference between developed section and undeveloped section of natural fracture, fracturing fluid first enters the extended natural fracture and then enters other fractures. Therefore, the temporary plugging of the extended natural fracture weakens its preferential tendency to enter the fluid and ensures the uniform migration of fracturing fluid to each fracture. Numerical simulation shows that some perforations do not form effective fractures, due to stress interference caused by excessive number of perforations. Hence, a fracturing scheme with fewer perforation times is adopted to reduce stress interference and improve the efficiency of perforating fracture formation. The results also observe that the reservoir contains plenty of brittle minerals such as calcite, which is easy to cause fractures. However, high silicon content easily form, extremely irregular fracture. Consequently, the fracturing scheme of shortening the length of fracturing section is adopted to strengthen the control of fracture expansion. The fracturing evaluation of the effect shows that the initial production of the well was 6.59 ×104 m3 with a flowback rate of 15.5%. Microseismic monitoring data shows that the reconstruction volume has increased from the original 9.70 ×104 m3 to 1.06 105 m3, the fracturing effect is remarkable.
The conclusion of this research supports for deep shale fracturing design and has a vital practical application significance. Compared with conventional fracturing methods, the fracturing performance is significantly improved results from weakening the advanced fluid tendency of natural fractures, decreasing the stress interference between clusters and strengthening the fracture control.
Key words: deep shale; natural fracture; stress interference; brittle mineral content; temporary plugging technology
How to cite: Di, S., Ma, S., Wei, Y., Cheng, S., Miao, L., and Liu, M.: Effective fracturing strategy considering natural fracture, stress interference and rock component—A practical application of Dingshan block in Sichuan Province of China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5027, https://doi.org/10.5194/egusphere-egu24-5027, 2024.