EGU24-5161, updated on 20 May 2024
https://doi.org/10.5194/egusphere-egu24-5161
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the Contribution of Atmospheric Nitrogen Deposition to Nitrogen Burden in an Eutrophic Lake in Eastern China

Weikun Li, Xia Wang, Zhongyi Zhang, Xiaodong Liu, and Lei Geng
Weikun Li et al.
  • Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China

Atmospheric deposition of natural and anthropogenic sourced reactive nitrogen (Nr, mainly including NH3, NH4+, NOx, NO3- and etc.) has substantial influence on terrestrial and aquatic ecosystems, driving global nutrient imbalances and increasing risks to human health. Although it has been demonstrated that atmospheric Nr deposition has a substantial impact on nitrogen pools in remote and/or sensitive lakes, there is a scarcity of systematic evaluations regarding atmospheric Nr deposition's impact on the nitrogen burden in eutrophic lakes with riverine input as the primary source. Utilizing a regional chemical transport model, combined with observations of riverine nitrogen input, we investigate the contribution of atmospheric Nr deposition to a eutrophic Lake Chaohu in eastern China. The results indicate that riverine total nitrogen (TN) input to the lake was 11553.3 t N yr-1 and atmospheric TN deposition was 2326.0 t N yr-1 in the year of 2022. For Nr species which are directly available for the biosphere supporting algae and plant growth, riverine NH4+ input was 1856.1 t N yr-1 and atmospheric NHx (NH3 and NH4+) deposition was 824.5 t N yr-1. The latter accounts for ~ 1/3 of total NHx input to the lake. For NOy (HNO3 and NO3-) species, atmospheric deposition was estimated to also contributes a similar amount to the NHx species. The results suggest that even in regions with dense human activities with primary riverine N input, atmospheric deposition of Nr could also contribute significantly to the bio-available nitrogen in lake systems, and addressing eutrophication in Lake Chaohu and other eutrophic lakes will also need to consider the reduction of NH3 and NOx (i.e., NO + NO2, the precursor of NOy) emissions, in addition to the mitigation of riverine N input.

How to cite: Li, W., Wang, X., Zhang, Z., Liu, X., and Geng, L.: On the Contribution of Atmospheric Nitrogen Deposition to Nitrogen Burden in an Eutrophic Lake in Eastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5161, https://doi.org/10.5194/egusphere-egu24-5161, 2024.