EGU24-5306, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5306
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying snout marginal bedload export from alpine glaciers

Eva Wolf1, Michael Dietze2,3, and Stuart Lane1
Eva Wolf et al.
  • 1University of Lausanne, Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, Switzerland
  • 2Georg August University Göttingen, Department of Geosciences and Geography, Germany
  • 3GeoResearch Centre GFZ Potsdam, Section 4.6 Geomorphology, Germany

Bedload export from Alpine glaciers by rivers is a geomorphological process of increasing interest given the high retreat rates of temperate ice masses in the context of global warming. Access and measurement difficulties make it very poorly known and contradictory hypotheses exist about how it might respond to receding glaciers. In subglacial channels, bedload transport is a key mechanism for evacuating one of the products of glacial erosion. It likely constrains glacial erosion rates as removal of the products of erosion is needed so as to yield fresh bedrock for further erosion. Environmental seismology may be a valuable tool in understanding rates of subglacial bedload export.
Previous studies have considered subglacial bedload export in glacial forefields using seismic sensors and tracked particles moving underneath the ice sheet. We are taking former studies forward and extend the monitoring of bedload export detecting coarse grain impacts using seismometers right at the glacial terminus. The project aims to determine diurnal as well as seasonal sediment export quantities and compare results among different field sites.
We studied subglacial bedload export for the Otemma and Arolla glacier in Valais, Switzerland in the summer of 2023 by installing two seismic stations (PE-6/B geophones) close to each glacier terminus throughout the melt season. These four-month records of seismic signals were processed using fluvial inversion algorithms of the eseis package implemented in R. The algorithm is refined with wave propagation- and ground properties determined through active seismic experiments as well as measured grain size distributions from field sampling. We are able to separate turbulent water noise and bedload noise in the seismic signal and estimate water stage as well as bedload transport rates. Results are validated by comparing the water stage estimates to measurements from a discharge gauging station. Over a full season, we compare the behaviour of the two different glaciers regarding sediment export taking into account their size, orientation, elevation and other factors. We relate the detected bedload export events to meteorological conditions and shifts in seasonal melt processes from snow melt to ice melt.
The results of this study help to get a clearer picture of diurnal as well as seasonal patterns of bedload export from glaciers, impacting downstream riverbed erosion and deposition in the light of increasingly rapid glacier melt. These geomorphological processes are of interest for different infrastructural facilities such as hydropower plants.

How to cite: Wolf, E., Dietze, M., and Lane, S.: Quantifying snout marginal bedload export from alpine glaciers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5306, https://doi.org/10.5194/egusphere-egu24-5306, 2024.