EGU24-5337, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5337
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seismic velocity structure of the 25 °S OCC north of the Rodriguez Triple Junction at the Central Indian Ridge extracted from ocean bottom seismometer

Anke Dannowski1, Martin Engels2, Bettina Schramm2, Michael Schnabel2, Oscar Lucke1, Udo Barckhausen2, Ingo Heyde2, Stefan Ladage2, Rüdiger Lutz2, Christian Filbrandt1, Anna Jegen1, and Ingo Grevemeyer1
Anke Dannowski et al.
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Geodynamics, Kiel, Germany
  • 2BGR, Federal Institute for Geosciences and Natural Resources, Hannover, Germany

Three tectonic plates meet at the Rodriguez Triple Junction in the Central Indian Ocean. The plates are separated by the Central Indian Ridge (CIR), the South-East Indian Ridge (SEIR) and the South-West Indian ridge (SWIR), which all show highly different spreading behaviours. While the northernmost segment of the SEIR is magmatically robust, the eastern tip of the SWIR is highly amagmatic. The CIR appears to oscillate between opening mechanisms, associated either with magmatic or magma-starved spreading processes, which can be observed over a very confined stretch of crust. Even though the area has been studied thoroughly, using a variation of geophysical and geological methods in the past decades, seismic images of the region were missing. From November 2023 to January 2024, RV Sonne (SO301 - SCIROCCO) set out for a seismic reflection and refraction survey to fill this gap and to provide a database for a better understanding of the tectonic setting and evolution of the area. A special focus was put on studying the structure and extent of the Oceanic Core Complex (OCC) at 25 °S.

Here we present preliminary results of an east-west trending 150 km long profile crossing the OCC and the CIR. Along the profile, 33 ocean bottom seismometers were deployed with a spacing of 4-5 km that grew denser over the OCC. The shot spacing was between 50-110 m. Clear crustal refracted P- and S-phases were observed to offsets of up to 40 km in the shot sections and mantle reflections, as well as Pn-phases could be identified sporadically. First results of travel time tomographies, which were executed separately for P- and S-waves, and used for the calculation of a Vp/Vs-ratio section indicate a strongly variable crustal construction. Highly fractured areas seem to interchange with highly hydrated areas within short distances. Correlations of the new bathymetric data to the seismic images and the integration of the new gravimetric and magnetic data will sharpen the geophysical image and its tectonic interpretation along the profile.

How to cite: Dannowski, A., Engels, M., Schramm, B., Schnabel, M., Lucke, O., Barckhausen, U., Heyde, I., Ladage, S., Lutz, R., Filbrandt, C., Jegen, A., and Grevemeyer, I.: Seismic velocity structure of the 25 °S OCC north of the Rodriguez Triple Junction at the Central Indian Ridge extracted from ocean bottom seismometer, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5337, https://doi.org/10.5194/egusphere-egu24-5337, 2024.