EGU24-5427, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5427
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Orbit parameterization aspects in global solutions of spherical Laser Ranging Satellites

Ulrich Meyer1, Linda Geisser1, Daniel König2, Rolf Dach1, Daniela Thaller2, and Adrian Jäggi1
Ulrich Meyer et al.
  • 1University of Bern, Astronomical Institute, Bern, Switzerland (ulrich.meyer@aiub.unibe.ch)
  • 2Bundesamt für Kartographie und Geodäsie, Frankfurt, Germany

Laser ranging to spherical satellites is a major source for the determination of geophysical and geometric parameters like the scale of the reference system and the lowest degree (1-2) gravity field coefficients, i.e. geocenter motion, dynamic oblateness and the orientation of the rotation axis of the Earth. The International Laser Ranging Service (ILRS) is collecting Satellite Laser Ranging (SLR) observations of a global station network, providing the range data as normal points to its analysis centers, which perform precise orbit determination (POD) and network solutions based on 7 day orbital arcs. Currently, efforts are undertaken to extend the classical ILRS processing of the LAGEOS and ETALON satellites by LARES 2, as well as lower-flying satellites, i.e. LARES, Stella and Starlette, necessitating an adaption of the SLR-POD model and parametrization due to the increased sensitivity to orbit perturbations at low orbit altitudes.

We present the status of the SLR-POD at AIUB, where in support of the ILRS analysis center at BKG the incorporation of the low-flying SLR satellites into the 7 day POD and network solution of LAGEOS/ETALON/LARES-2 is beeing tested, making use of long-arc stacking techniques of daily arcs to continuous 7 day arcs. All orbit and geophysical parametes are estimated in one common estimation process to avoid implicit regularization by apriori information. Special attention is paid to the co-estimation of the low-degree gravity field coefficients and the correlations with the empirical dynamic parameters deployed in the classical LAGEOS/ETALON POD model.

How to cite: Meyer, U., Geisser, L., König, D., Dach, R., Thaller, D., and Jäggi, A.: Orbit parameterization aspects in global solutions of spherical Laser Ranging Satellites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5427, https://doi.org/10.5194/egusphere-egu24-5427, 2024.