Global Streamflow Seasonal Forecasts: Impact of soil moisture initialization in a novel two-way AOGCM-River Routing coupling approach
- Centre National de Recherche Météorologique (CNRM) - Météo France, Groupe de Météorologie de Grande Echelle et Climat, Toulouse, France (gabriel.narvaez-campo@meteo.fr)
Accurate seasonal streamflow forecasts (SSF) are crucial for disaster prevention, water management, agriculture, and hydropower generation. A global approach becomes imperative in regions lacking forecast systems. The Météo-France seasonal prediction system (MF System 8 - SYS8), contributing to Copernicus Climate Change Services (C3S), employs a fully coupled Atmosphere-Ocean General Circulation Model (AOGCM) with an advanced river routing component (CTRIP) interacting with the ISBA land-surface scheme. This study evaluates the skill of the SYS8 global SSF through hindcast river discharges. This work is part of the European project CERISE, which aims to enhance the C3S seasonal forecast portfolio by improving land initialisation methodologies.
SYS8 derives land initial conditions from a historical initialisation run where land (such as soil moisture and river discharges) is weakly constrained, contrasting with the atmosphere and ocean counterparts, which are nudged to the ERA5 and GLORYS re-analysis. This study improves the initialisation run by relaxing soil moisture to fields reconstructed from an offline land simulation. Daily streamflow ensemble hindcasts of 25 members are generated in a 0.5° grid, with a lead time of up to 4 months initialised on the first day of May and August between 1993-2017. May and August initialisations allow forecasting of summer (JJA) and fall (SON) seasons. Actual forecast skill is assessed against streamflow observations in 1608 monitored basins worldwide (with areas > 3000 km2) using deterministic and probabilistic metrics. The classical Ensemble Streamflow Prediction approach (ESP) serves as a benchmark to evaluate the control SYS8 SSF skill and the additional skill of soil moisture nudging.
Globally, hindcast skill improves with enhanced land-surface initial conditions, especially during summer. Lower latitudes (<50°N) exhibit increased skill, while higher and cooler latitudes may lead to overestimated streamflow magnitude and oscillation amplitude due to soil moisture constraints. Local skill degradation will be discussed. Still, positive results support ongoing efforts to enhance land initialisation through a global land data assimilation system.
How to cite: Narváez, G. and Ardilouze, C.: Global Streamflow Seasonal Forecasts: Impact of soil moisture initialization in a novel two-way AOGCM-River Routing coupling approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5484, https://doi.org/10.5194/egusphere-egu24-5484, 2024.