EGU24-5613, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5613
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Abrupt onset and termination of the Holocene Humid Period across Asia

Yonaton Goldsmith1, Hai Xu2, Narantsetseg Ts3, Adi Torfstein11,4, Mordechai Stein1,5, and Yehouda Enzel1
Yonaton Goldsmith et al.
  • 1Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
  • 2Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
  • 3Institute of Geology, Mongolian Academy of Sciences
  • 4Interuniversity Institute for Marine Sciences, Eilat, Israel.
  • 5Geological Survey of Israel, Jerusalem, Israel

The termination of the Holocene Humid Period between 6-5 kyrs ago is relatively well-documented in Africa. By contrast, outside of Africa the spatial extent of this termination, the rate of change (gradual vs. abrupt) and the timing of this termination remain obscure. To assess whether such a termination occurred in Asia and to characterize the spatial and temporal evolution of this termination, we constructed lake-level histories of five closed-basin lakes, four of which are located along a north-south transect in East Asia (Lakes Khukh, Dali, Daihai and Chenghai from 50N to 25N) and the fifth is the Dead Sea in western Asia (33N). A closed-basin lake has no outlet, and therefore its size varies as a function of precipitation and evaporation. Distinct shoreline deposits form at the lake’s margin and are physical relict imprints of past lake-levels. These lake-level histories provide a powerful, first order, quantitative record of past water availability. For each lake, we developed a detailed lake-area history based on numerous radiocarbon, Optical Stimulated Luminescence and U/Th disequilibrium ages.

All five lakes show that substantial changes in lake-level (up to 60 m) and surface area (of up to six times that of modern area) occurred throughout the Holocene. The results indicate that in East Asia wet conditions were initiated during the Bølling-Allerød and weakened and dried during the Younger-Dryas. The onset of the Holocene Humid Period, at 11.5 kyrs, was rapid, with the lakes rising to their high-stands within a half millennium. In western Asia, the lake-level rise most likely occurred later, at ~10 kyrs. During the Holocene Humid Period the lakes were significantly larger than the modern lakes. The wet conditions in northeast Asia and western Asia prevailed until 6 kyrs, when the lakes dried out abruptly, within a few decades, and have not been restored to their pre-6 kyrs sizes since. In South China, the rapid drying occurred earlier, at ca. 8 kyrs. All five lakes show a substantial dry period between 6 – 4 kyrs. In northeast Asia the dry conditions prevail until today. However, in both South China and western Asia the lakes rose at 3 kyrs and remained mostly high until recently.

Our findings from the five Asian closed-basin lakes show that during the early Holocene, Asia was scattered with lakes that were much larger than today and that an abrupt onset and abrupt termination of the Holocene humid period occurred across Asia. We use the lake-level histories to quantify regional water availability, to discuss the migration of rain-belts in Asia, speleothem oxygen isotopes and pollen records, and the ability of transient climate models to capture the magnitude, extent and rapidness of these wet conditions and hydroclimatic transitions.

How to cite: Goldsmith, Y., Xu, H., Ts, N., Torfstein1, A., Stein, M., and Enzel, Y.: Abrupt onset and termination of the Holocene Humid Period across Asia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5613, https://doi.org/10.5194/egusphere-egu24-5613, 2024.