- 1Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norway (helene.langehaug@nersc.no)
- 2Institute for Marine Research, and Bjerknes Centre for Climate Research
- 3University of Bergen, and Bjerknes Centre for Climate Research
Marine heatwaves (MHW) can have large negative impacts on life in the ocean, such as kelp forest and corals. These environments are vital for protecting a range of different species in the ocean. With global warming, the occurrence and intensity of MHW are expected to increase, also in the polar regions. The Barents Sea has experienced large climate changes, becoming less influenced by sea ice during the last decades. Being able to predict the likelihood of MHW to occur in the Barents Sea could be highly beneficial to fisheries, aquaculture, and other relevant stakeholders. Such information could be useful in long-term risk assessment. In this study, we assess for the first time the skill of the Norwegian Climate Prediction Model (NorCPM) in predicting the likelihood of MHW. For this analysis, we focus on intense MHW in July 2016 taking place in the Barents Sea, and previously documented by satellite data. We find promising results in the seasonal predictions from NorCPM, where the predictions show increased probability for MHW to occur in July 2016 compared to July 2015 (when the MHW activity was lower than in 2016). The increased probability was already seen six months prior to the event. Furthermore, we downscale the results from the global NorCPM to a more refined grid with a horizontal resolution of 10km. This test case shows that downscaling can provide valuable information on the subsurface signature of MHW. We found the event in July 2016 to be shallow (down to about 50m) compared to another MHW event in July 2013, where warm anomalies occupied the whole water column. These results suggest that the event in July 2016 was atmospheric-driven, consistent with a previous study, whereas the event in 2013 is more likely to be ocean-driven. The results from this case study are promising for future seasonal prediction of MHW using NorCPM, and more in-depth studies are needed to quantify the predictive skill for different cases and different regions.
How to cite: Langehaug, H. R., Sandø, A. B., Hordoir, R., Counillon, F., Chiu, P.-G., and Raj, R.: Marine heatwaves: Can we predict them in the Barents Sea?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5667, https://doi.org/10.5194/egusphere-egu24-5667, 2024.