EGU24-5807, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5807
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Transient deformation leading to earthquakes: bridging observations from the lab and the field 

Patricia Martínez-Garzón1, Grzegorz Kwiatek1, Piero Poli2, Georg Dresen1,3, and Marco Bohnhoff1,4
Patricia Martínez-Garzón et al.
  • 1Helmholtz Centre GFZ Potsdam, 4.2 Geomechanics and Scientific Drilling, Potsdam, Germany
  • 2Universitá degli study di Padova, Padova, Italy
  • 3Institute of Geological Sciences, University of Potsdam, Potsdam, Germany
  • 4Free University of Berlin, Berlin, Germany

A longstanding question in geoscience concerns whether earthquakes show a preparatory process and precursory seismic activity. Some models hold that in the intermediate-term (from months to years), seismicity and/or aseismic transients in fault slip and in other fault properties occur. During the last decades, improvements in earthquake monitoring, the integration of geodesy capturing slow deformation, and the incorporation of novel data analysis techniques including machine learning and artificial intelligence have improved our ability to better discern how earthquake sequences evolve before a mainshock. The few available observations of transient deformation preceding well-recorded earthquake sequences show a high variability, thus our potential for improving earthquake forecasting is still limited. The body of knowledge available from mechanical models, numerical simulations, experimental work and field observations highlighted a wealth of structural, tectonic and boundary conditions which may control the dynamics of earthquake sequences. These suggest that several processes can affect earthquake preparation on different temporal and spatial scales, ultimately yielding highly varying transient observations prior to mainshocks. These observations also highlight that existing theoretical and conceptual models of the preparation/nucleation process may not fully capture the governing physics.

We analyzed seismicity transients prior to the occurrence of the 2023, MW 7.8 Kahramanmaraş/Türkiye earthquake. We identified seismic precursory activity composed of a handful of isolated spatio-temporal clusters occurring in a complex fault network within 65 km of the future earthquake epicenter. Some of these clusters contributed to acceleration of seismicity rates in an area surrounding the future mainshock and starting ca. 8 months before the event. Within that area, we also observed a decrease in Gutenberg-Richter b-values. Comparable seismic transients were not observed in the region at least since 2014. The complex preparatory process differs significantly from the cascade of close (<200 m) foreshocks observed before the 1999 MW 7.6 Izmit/Türkiye earthquake rupturing a mature fault segment. This indicates that fault structure and heterogeneity expressed as roughness or segmentation exert a strong control on deformation transients before an earthquake. This bears strong similarities with laboratory studies on faults with varying roughness. Trends of seismic preparatory attributes observable in the field follow those documented in both laboratory stick-slip tests and numerical models of heterogeneous earthquake rupture affecting multiple fault segments. In the lab, rough faults before stick-slip tend to display prolonged phases of precursory slip including an interplay of (dominating) slow transients combined with high-frequency seismic deformation in stark contrast to smooth faults.

How to cite: Martínez-Garzón, P., Kwiatek, G., Poli, P., Dresen, G., and Bohnhoff, M.: Transient deformation leading to earthquakes: bridging observations from the lab and the field , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5807, https://doi.org/10.5194/egusphere-egu24-5807, 2024.