EGU24-5962, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5962
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The July 2023 Northern Italy hailstorms from a climatological and (re)insurance market perspective

Davide Panosetti1 and Umberto Tomassetti2
Davide Panosetti and Umberto Tomassetti
  • 1Gallagher Re, Global Analytics R&D, London, United Kingdom (Davide_Panosetti@GallagherRe.com)
  • 2Gallagher Re, Italy Nat Cat Service Offering Lead & Model Research and Evaluation, Milan, Italy (Umberto_Tomassetti@GallagherRe.com)

Hail is by far the greatest contributor worldwide to insured losses from severe convective storms on an annual basis. Individual outbreaks can cause losses well above EUR 1 bn. In Italy, severe convective storm losses have been dominating the market in the last 5-7 years, with a record of EUR 1.4 bn in 2019 prior to year 2023. On 18-25 July 2023 an unprecedented outbreak brought large hail and strong winds to Lombardy, Veneto, Friuli-Venezia Giulia, Piedmont and Emilia-Romagna, with affected cities including Parma, Turin, Milan and Venice. There were many reports of large hailstones, causing significant damage to property and motor vehicle. The European hail record was breached too. Twice. On 19 July, a hailstone measuring 16 cm in diameter was recorded in Carmignano di Brenta, and broke the previous largest hail record in Europe, which was held by a 15 cm stone found in Romania in 2016. Just five days later, a new record was set, when a 19 cm hailstone was found in the town of Azzano Decimo. This is very close to the all-time largest hail recorded of 20.3 cm, found in 2010 in South Dakota, US. Total loss estimates, of which hail was by far the largest contributor, exceeds EUR 3 bn, of which 70-80% in the property sector (residential and commercial buildings), and the remaining 20-30% in the motor vehicle sector. These were the largest hail events in Italy in recorded history, and the costliest cat event in the third quarter of 2023 for the global insurance market.

Following in the footsteps of the severe convective storm outbreak that impacted France in June 2022, these storms came after a record-hot air mass that languished over Southern Europe much of the week prior. Persistent meteorological conditions conducive to rotating supercell thunderstorms were observed for several consecutive days. These compounded with local conditions favorable for the development of severe hail over the Po Valley. In this study we present a reconstruction of these events based on event reports from European Severe Weather Database. We analyze the synoptic configurations and pre-convective environments that characterized them, with focus on those properties and features that are peculiar to severe hail-forming thunderstorms. We look at different formulations of CAPE and vertical wind shear, as well as composite parameters such as the Significant Hail Parameter and the Supercell Composite Parameter. We make use of Gallagher Re’s Severe Convective Storm Index to contextualize these events historically, and to discuss climate change trends over Northern Italy. Finally, we discuss the implications that such events and their expected frequency under climate change have on the (re)insurance market.

How to cite: Panosetti, D. and Tomassetti, U.: The July 2023 Northern Italy hailstorms from a climatological and (re)insurance market perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5962, https://doi.org/10.5194/egusphere-egu24-5962, 2024.