Improved representation of anthropogenic deposits in 3D urban geological subsurface models
- TNO - Geological Survey of the Netherlands, Utrecht, Netherlands (jeroen.schokker@tno.nl)
The urban subsurface is increasingly disturbed by human activity and/or covered by anthropogenic deposits. This is particularly true for city centres, with thick and heterogeneous subsurface archives related to historical urban development, as well as for modern residential and industrial areas, that are often built on extensive sheets of filling sand. The anthropogenic deposits may be very diverse in nature, ranging from natural aggregates (crushed rock, gravel, sand or clay) to various types of novel anthropogenic materials (e.g. steelworks slags, concrete and rubble), as well as mixtures of these.
Although anthropogenic deposits could be represented on subsurface maps and in 3D models, these deposits are often omitted. Their lateral extent and thickness are not well constrained and relevant information on the lithological properties of the deposits is generally lacking. At the same time, the demand for complete and detailed subsurface information in the built environment is increasing and relates to anything from building stability and ground heat extraction to preserving cultural heritage and mitigating the effects of climate change.
This presentation therefore focusses on the lithological characterisation and stratigraphical subdivision of anthropogenic deposits in order to improve their representation in 3D geological subsurface models. We will evaluate current lithological standards and stratigraphic approaches and present the principles of the approach that we are developing in the Netherlands. We will discuss the practical consequences and give examples of bringing our approach into practice. Ultimately, a well-thought lithological description and classification system of anthropogenic deposits is a prerequisite to produce reliable subsurface and coupled surface-subsurface models. In that way, we can address the many challenges related to the ever-increasing use of urban space and thus improve the wellbeing of our citizens.
How to cite: Schokker, J. and Dijkstra, J.: Improved representation of anthropogenic deposits in 3D urban geological subsurface models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6045, https://doi.org/10.5194/egusphere-egu24-6045, 2024.
Comments on the supplementary material
AC: Author Comment | CC: Community Comment | Report abuse