EGU24-6065, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6065
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Magnetospheric time history:  How much do we need for forecasting?

Kendra R. Gilmore, Sarah N. Bentley, and Andy W. Smith
Kendra R. Gilmore et al.
  • Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-Upon-Tyne, United Kingdom

Forecasting the aurora and its location accurately is important to mitigate any potential harm to vital infrastructure like communications and electricity grid networks. Current auroral prediction models rely on our understanding of the interaction between the magnetosphere and the solar wind or geomagnetic indices. Both approaches do well in predicting but have limitations concerning forecasting (geomagnetic indices-based model) or because of the underlying assumptions driving the model (due to a simplification of the complex interaction). By applying machine learning algorithms to this problem, gaps in our understanding can be identified, investigated, and closed. Finding the important time scales for driving empirical models provides the necessary basis for our long-term goal of predicting the aurora using machine learning.

Periodicities of the Earth’s magnetic field have been extensively studied on a global scale or in regional case studies. Using a suite of different time series analysis techniques including frequency analysis and investigation of long-scale changes of the median/ mean, we examine the dominant periodicities of ground magnetic field measurements at selected locations. A selected number of stations from the SuperMAG network (Gjerloev, 2012), which is a global network of magnetometer stations across the world, are the focus of this investigation.

The periodicities retrieved from the different magnetic field components are compared to each other as well as to other locations. In the context of auroral predictions, an analysis of the dominating periodicities in the auroral boundary data derived from the IMAGE satellite (Chisham et al., 2022) provides a counterpart to the magnetic field periodicities.

Ultimately, we can constrain the length of time history sensible for forecasting.

How to cite: Gilmore, K. R., Bentley, S. N., and Smith, A. W.: Magnetospheric time history:  How much do we need for forecasting?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6065, https://doi.org/10.5194/egusphere-egu24-6065, 2024.