EGU24-6227, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6227
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

An integrated seismic, controlled source electromagnetic and magnetotelluric study of the continent-ocean transition southwest of the UK

Tim Minshull1, Gaye Bayrakci2, and Steven Constable3
Tim Minshull et al.
  • 1School of Ocean and Earth Science, University of Southampton, Southampton, UK (tmin@soton.ac.uk)
  • 2National Oceanography Centre, Southampton, United Kingdom (g.bayrakci@noc.ac.uk)
  • 3Scripps Institution of Oceanography, University of California at San Diego, San Diego, USA (sconstable@ucsd.edu)

During the final stages of breakup at magma-poor rifted margins, mantle rocks are commonly exhumed and altered to serpentinite due to the ingress of ocean water. This mantle exhumation phase is followed by an increase in magmatism as new oceanic crust begins to form. However, the degree to which serpentinisation is focused at faults and whether the onset of magmatism is abrupt or gradual are both unclear. These processes are difficult to untangle with seismic data alone because the P wave velocities of mafic crustal rocks and partially serpentinised mantle rocks can be similar. However, serpentinised mantle rocks are generally more conductive, often by about an order of magnitude, than mafic crustal rocks, so controlled source electromagnetic (CSEM) and magnetotelluric (MT) techniques provide a promising route to resolve controversies around the structure of lithosphere formed during the onset of seafloor spreading.

To take advantage of the complementary information provided by seismic and electromagnetic data, in September 2023 we acquired a coincident and densely sampled wide-angle seismic, CSEM and MT datasets across the continent-ocean transition at Goban Spur, southwest of the UK. Our c. 200-km profile is coincident with a pre-existing high-quality seismic reflection profile. It extends from thinned continental crust, whose nature is confirmed by drilling, across a broad zone that is inferred on the basis of a previous wide-angle seismic experiment to be composed of exhumed and serpentinised mantle, and into oceanic crust, evidenced by the presence of the prominent seafloor-spreading magnetic anomaly A34. Along this profile, we deployed 49 seafloor instruments at c. 4-km spacing that were each capable of recording seismic, electric field and magnetometer data, plus an additional two instruments recording the inline electric field on 200-m dipoles. These instruments were on the seafloor for about two weeks. During this time we acquired two wide-angle seismic profiles: one using a 5200 cu. in. airgun array shot at 90-s intervals and a second using a 3900 cu. in. airgun array shot at 30-s intervals. We also acquired a frequency-domain  CSEM profile using a transmitter towed c. 100 m above the seabed that powered a 300-m electric dipole with a c. 100-A current at a fundamental frequency of 0.25 Hz. Preliminary data analysis showed that seismic signals were recorded to c. 90 km offset and CSEM signals to c. 8 km offset, while high-quality MT data were recorded at periods of 20-10000 s.

Thus we expect to recover coincident high-resolution images of the seismic velocity and resistivity structure of the upper few km of the basement, sufficient to image patterns of serpentinisation and mafic intrusion. We also expect to recover lower-resolution images of the resistivity to tens of km below the seabed and thus to distinguish continental mantle lithosphere from depleted oceanic lithosphere. We will present examples of the data acquired and the results of some preliminary analysis.    

How to cite: Minshull, T., Bayrakci, G., and Constable, S.: An integrated seismic, controlled source electromagnetic and magnetotelluric study of the continent-ocean transition southwest of the UK, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6227, https://doi.org/10.5194/egusphere-egu24-6227, 2024.