EGU24-6284, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6284
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Fault drainage state and frictional stability in response to shearing rate steps in natural gouge

Raphael Affinito1, Derek Elsworth1,2, and Chris Marone1,3
Raphael Affinito et al.
  • 1The Pennsylvania State University, College of Earth and Mineral Sciences, Department of Geoscience, University Park, United States of America (affinito@psu.edu)
  • 2Dept. of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University,University Park, United States of America
  • 3Dipartimento di Scienze della Terra, La Sapienza Università di Roma, Rome, Italy

Elevated pore fluid pressures are frequently implicated in governing fault zone seismicity. While substantial evidence from geodetic and geological studies supports this notion, there is a notable scarcity of experimental observations of how fluid pressure influences fault stability during shear. Understanding the precise interplay between porosity, fault slip rate, and frictional stability is pivotal for assessing the significance of processes like dilational strengthening or thermal pressurization in the context of seismic hazards. Here, we prepare fault gouges from the Utah FORGE enhanced geothermal field injection well 16A at depths corresponding to seismic events (between 2050 – 2070m). Experiments were conducted inside a pressure vessel and loaded under a true-triaxial stress state, replicating in-situ stress conditions observed at the Utah FORGE site. The applied fault normal stress and during the experiments were held constant at 44MPa. Pore fluid pressure was varied between successive experiments (13, 20, and 27 MPa) to span a range of effective stresses to examine impacts on fault dilation/compaction and the successive frictional stability. Different fluid pressure boundary conditions: constant volume or pressure were applied to explore how changes in shearing rate influence gouge stability thought the fault drainage state. Our data indicate that the Utah FORGE samples are velocity-neutral and transition to velocity-weakening behavior at elevated pore pressure and shear strains >7. We find dilatancy coefficients e = ∆f/∆ln(v), where f is porosity and v is fault slip velocity, consistent with quartz-feldspathic-rich rocks ranging from 5–12^10-4, indicating a conditionally unstable regime. Furthermore, our results demonstrate that the boundary conditions for pore fluids influence frictional stability viachanges in effective normal stress. For example, when pore volume has zero flux, an expansion in the void volume during slip results in a decrease in pore pressure, transitioning the system towards frictional stability. Our results indicate that the connectivity of pore conduits may be more important than the imposed pore pressure conditions when considering the impact on fault stability. We suggest that the interplay between fault slip and fluid mobility within a fault is a delicate balance for predicting and managing seismic hazards.

How to cite: Affinito, R., Elsworth, D., and Marone, C.: Fault drainage state and frictional stability in response to shearing rate steps in natural gouge, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6284, https://doi.org/10.5194/egusphere-egu24-6284, 2024.